Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T16:26:53.604Z Has data issue: false hasContentIssue false

On the Cauchy problem for the differential equation f(t, x, x′, …, x(k)) = 0

Published online by Cambridge University Press:  18 May 2009

Biagio Ricceri
Affiliation:
Dipartimento di Matematica, Universita' di Messina, 98166 Sant'agata — Messina, Italy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the sequel, given k, n ∈ ℕ, p ∈ [1, ∞] and a compact real interval I, we denote by Wk, p(I, ℝn) (simply by Wk,p(I if n = 1) the space of all functions uCk−1(I, ℝn) such that uk−1 is absolutely continuous in I and u(k)Lp (I, ℝn).

Very recently, in [11], J. R. L. Webb and S. C. Welsh obtained the following existence result.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1991

References

REFERENCES

1.Bressan, A., On differential relations with lower continuous right-hand side. An existence theorem, J. Differential Equations 37 (1980), 8997.CrossRefGoogle Scholar
2.Kuratowski, K., Topology, Vol. I (Academic Press, 1966).Google Scholar
3.Michael, E., Continuous selections and countable sets, Fund. Math. Ill (1981), 110.CrossRefGoogle Scholar
4.Ricceri, B., Sur la semi-continuité inférieure de certaines multifonctions, C.R. Acad. Sci. Paris, Série I 294 (1982), 265267.Google Scholar
5.Ricceri, B., Applications de théorémes de semi-continuité inférieure, C.R. Acad. Sci. Paris, Série 1 295 (1982), 7578.Google Scholar
6.Ricceri, B., Solutions lipschitziennes d'équations différentielles sous forme implicite, C.R. Acad. Sci. Paris, Série 1 295 (1982), 245248.Google Scholar
7.Ricceri, B., On multiselections, Matematiche 38 (1983), 221235.Google Scholar
8.Ricceri, B., On multifunctions with convex graph, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 77 (1984), 6470.Google Scholar
9.Ricceri, B., Lipschitzian solutions of the implicit Cauchy problem g(x1) = f(t, x), x(0) = 0, with f discontinuous in x, Rend. Circ. Mat. Palermo 34 (1985), 127135.CrossRefGoogle Scholar
10.Saint, J. Raymond, Equations différentielles sous forme implicite, Matematiche, to appear.Google Scholar
11.Webb, J. R. L. and Welsh, S. C., Existence and uniqueness of initial value problems for a class of second-order differential equations, J. Differential Equations 82 (1989), 314321.CrossRefGoogle Scholar
12.Webb, J. R. L., Topological degree and A-proper operators, Linear Algebra Appl. 84 (1986), 227242.CrossRefGoogle Scholar