Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T14:24:37.719Z Has data issue: false hasContentIssue false

ON THE DIMENSION OF GROUPS THAT SATISFY CERTAIN CONDITIONS ON THEIR FINITE SUBGROUPS

Published online by Cambridge University Press:  04 November 2020

LUIS JORGE SÁNCHEZ SALDAÑA*
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Colonia Copilco el Bajo, Delegación Coyoacán, Mexico City04510, Mexico, e-mail: luisjorge@ciencias.unam.mx

Abstract

We say a group G satisfies properties (M) and (NM) if every nontrivial finite subgroup of G is contained in a unique maximal finite subgroup, and every nontrivial finite maximal subgroup is self-normalizing. We prove that the Bredon cohomological dimension and the virtual cohomological dimension coincide for groups that admit a cocompact model for EG and satisfy properties (M) and (NM). Among the examples of groups satisfying these hypothesis are cocompact and arithmetic Fuchsian groups, one-relator groups, the Hilbert modular group, and 3-manifold groups.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aramayona, J., Degrijse, D., Martínez-Pérez, C. and Souto, J., Geometric dimension of lattices in classical simple Lie groups, J. Topol. 10(2) (2017), 632667.CrossRefGoogle Scholar
Aramayona, J. and Martnez-Pérez, C., The proper geometric dimension of the mapping class group, Algebr. Geom. Topol. 14(1) (2014), 217227.CrossRefGoogle Scholar
Ash, A., Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51(2) (1984) 459468.CrossRefGoogle Scholar
Bustamante, M. and Sánchez Saldaña, L. J., On the algebraic K-theory of the Hilbert modular group, Algebr. Geom. Topol. 16(4) (2016), 21072125.CrossRefGoogle Scholar
Davis, J. F. and Lück, W., The p-chain spectral sequence, K-Theory 30(1) (2003), 71104. Special issue in honor of Hyman Bass on his seventieth birthday. Part I.CrossRefGoogle Scholar
Degrijse, D. and Martnez-Pérez, C., Dimension invariants for groups admitting a cocompact model for proper actions, J. Reine Angew. Math. 721 (2016), 233249.Google Scholar
Degrijse, D. and Souto, J., Dimension invariants of outer automorphism groups, Groups Geom. Dyn. 11(4) (2017), 14691495.CrossRefGoogle Scholar
Freitag, E., Hilbert modular forms (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
Joecken, K., Lafont, J.-F. and Sánchez Saldaña, L. J., Virtually cyclic dimension for 3-manifold groups. To appear in Groups, Geometry, and Dynamics, arXiv:1904.04632, April 2019.Google Scholar
Kropholler, P. H., Martinez-Pérez, C. and Nucinkis, B. E. A., Cohomological finiteness conditions for elementary amenable groups, J. Reine Angew. Math. 637 (2009), 4962.Google Scholar
Lacoste, C., Dimension rigidity of lattices in semisimple Lie groups, Groups Geom. Dyn. 13(1) (2019), 149189.CrossRefGoogle Scholar
Lück, W. and Meintrup, D., On the universal space for group actions with compact isotropy, in Geometry and topology: Aarhus (1998), Contemporary Mathematics, vol. 258 (American Mathematical Society, Providence, RI, 2000), 293–305.Google Scholar
Leary, I. J. and Nucinkis, B. E. A., Some groups of type VF , Invent. Math. 151(1) (2003), 135165.CrossRefGoogle Scholar
Leary, I. J. and Petrosyan, N., On dimensions of groups with cocompact classifying spaces for proper actions, Adv. Math. 311 (2017) 730747.CrossRefGoogle Scholar
Lück, W., The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149(2) (2000), 177203.CrossRefGoogle Scholar
Lück, W., Survey on classifying spaces for families of subgroups, in Infinite groups: geometric, combinatorial and dynamical aspects, Progress in Mathematical, vol. 248 (Birkhäuser, Basel, 2005), 269–322.Google Scholar
Morgan, J. W., Recent progress on the Poincaré conjecture and the classification of 3-manifolds, 42(1) (2005), 5778.CrossRefGoogle Scholar
Serre, J.-P., Trees, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2003). Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.Google Scholar
Vogtmann, K., Automorphisms of free groups and outer space, in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94 (2002), 131.Google Scholar