Published online by Cambridge University Press: 29 March 2012
Let d > 0 be a squarefree integer and denote by h = h(−d) the class number of the imaginary quadratic field . It is well known (see e.g. [25]) that for a given positive integer N there are only finitely many squarefree d's for which h(−d) = N. In [45], Saradha and Srinivasan and in [28] Le and Zhu considered the equation in the title and solved it completely under the assumption h(−d) = 1 apart from the case d ≡ 7 (mod 8) in which case y was supposed to be odd. We investigate the title equation in unknown integers (x, y, l, n) with x ≥ 1, y ≥ 1, n ≥ 3, l ≥ 0 and gcd(x, y) = 1. The purpose of this paper is to extend the above result of Saradha and Srinivasan to the case h(−d) ∈ {2, 3}.