Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Bennett, Michael
and
de Weger, Benjamin
1998.
On the Diophantine equation |𝑎𝑥ⁿ-𝑏𝑦ⁿ|=1.
Mathematics of Computation,
Vol. 67,
Issue. 221,
p.
413.
Bennett, Michael A.
and
Skinner, Chris M.
2004.
Ternary Diophantine Equations via Galois Representations and Modular Forms.
Canadian Journal of Mathematics,
Vol. 56,
Issue. 1,
p.
23.
Saradha, N.
and
Srinivasan, Anitha
2006.
Solutions of some generalized Ramanujan-Nagell equations.
Indagationes Mathematicae,
Vol. 17,
Issue. 1,
p.
103.
Luca, Florian
and
Togbé, Alain
2007.
On The Diophantine Equation x
2
+ 7
2k
= y
n
.
The Fibonacci Quarterly,
Vol. 45,
Issue. 4,
p.
322.
ABU MURIEFAH, FADWA S.
LUCA, FLORIAN
and
TOGBÉ, ALAIN
2008.
ON THE DIOPHANTINE EQUATION x2 + 5a 13b = yn.
Glasgow Mathematical Journal,
Vol. 50,
Issue. 1,
p.
175.
LUCA, FLORIAN
and
TOGBÉ, ALAIN
2008.
ON THE DIOPHANTINE EQUATION x2 + 2a · 5b = yn.
International Journal of Number Theory,
Vol. 04,
Issue. 06,
p.
973.
Goins, Edray
Luca, Florian
and
Togbé, Alain
2008.
Algorithmic Number Theory.
Vol. 5011,
Issue. ,
p.
430.
Demirci, Musa
Naci Cangül, İsmail
Soydan, Gökhan
and
Tzanakis, Nikos
2010.
On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$.
Functiones et Approximatio Commentarii Mathematici,
Vol. 43,
Issue. 2,
Cangul, Ismail Naci
Demirci, Musa
Luca, Florian
Pintér, Ákos
and
Soydan, Gökhan
2010.
On the Diophantine Equation
x
2
+ 2
a
· 11
b
=
y
n
.
The Fibonacci Quarterly,
Vol. 48,
Issue. 1,
p.
39.
BÉRCZES, ATTILA
and
PINK, ISTVÁN
2012.
ON THE DIOPHANTINE EQUATIONx2+d2l+ 1=yn.
Glasgow Mathematical Journal,
Vol. 54,
Issue. 2,
p.
415.
Zhang, Zhongfeng
and
Togbé, Alain
2016.
On two Diophantine equations of Ramanujan-Nagell type.
Glasnik Matematicki,
Vol. 51,
Issue. 1,
p.
17.
Zhang, Zhongfeng
and
Togbé, Alain
2018.
On the Ramanujan-Nagell type Diophantine equation x2+Akn=B.
Glasnik Matematicki,
Vol. 53,
Issue. 1,
p.
43.
Bhatter, S.
Hoque, A.
and
Sharma, R.
2019.
On the solutions of a Lebesgue–Nagell type equation.
Acta Mathematica Hungarica,
Vol. 158,
Issue. 1,
p.
17.
Ghadermarzi, Amir
2019.
On the Diophantine equationsx2+ 2α3β19γ=ynandx2+ 2α3β13γ=yn.
Mathematica Slovaca,
Vol. 69,
Issue. 3,
p.
507.
Sharma, Richa
2020.
Class Groups of Number Fields and Related Topics.
p.
147.
Alan, Murat
and
Zengin, Uğur
2020.
On the Diophantine equation $$x^2+3^a41^b=y^n $$.
Periodica Mathematica Hungarica,
Vol. 81,
Issue. 2,
p.
284.
Chakraborty, Kalyan
Hoque, Azizul
and
Sharma, Richa
2021.
On the solutions of certain Lebesgue–Ramanujan–Nagell equations.
Rocky Mountain Journal of Mathematics,
Vol. 51,
Issue. 2,
Patel, Vandita
2021.
A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations.
The Ramanujan Journal,
Vol. 56,
Issue. 2,
p.
585.
Rayaguru, Sai Gopal
2022.
On the Diophantine equation $$x^2+C=y^n$$.
Indian Journal of Pure and Applied Mathematics,