Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T15:51:14.373Z Has data issue: false hasContentIssue false

On valuation subalgebras and their centres

Published online by Cambridge University Press:  18 May 2009

C. P. L. Rhodes
Affiliation:
University of Wales College of Cardiff, Cardiff CF2 4AG, Wales
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall extend results of Samuel [19] and Griffin [8, 9] about conditions which generalise the notion of valuation domain in a field. Let U be a commutative ring with identity, R a subring of U and L an R-submodule of U. The conditions we study have in common the property (EV), that the submodules L:x (xU) form a chain. We pay particular attention to the strongest of the conditions, viz, that L be a Manis valuation (MV) subring, i.e. having a prime ideal P such that (L, P) is a maximal pair in U (see [19], [16] and e.g. [4]). Such P is unique, being the union of all L:x such that xL, which we call P+(L) the centre of L. This set P+ plays a key role in the study of all our valuation conditions.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1989

References

1.Bourbaki, N., Commutative algebra (Addison-Wesley, 1972).Google Scholar
2.Brase, C. H., Valuation ideals with zero divisors, J. Reine Angew. Math. 258 (1973), 192200.Google Scholar
3.Eggert, N. and Rutherford, H., A local characterization of Prüfer rings, J. Reine Angew. Math. 250 (1971), 109112.Google Scholar
4.Faith, C., The structure of valuation rings, j. Pure Appl. Algebra 31 (1984), 727.CrossRefGoogle Scholar
5.Faith, C., The structure of valuation rings II, J. Pure Appl. Algebra 42 (1986), 3743.CrossRefGoogle Scholar
6.Gilmer, R., Multiplicative ideal theory (Marcel Dekker, 1972).Google Scholar
7.Griffin, M., Prüfer rings with zero divisors, J. Reine Angew. Math. 239/240 (1969), 5567.Google Scholar
8.Griffin, M., Generalising valuations to commutative rings, Queen's Mathematical Preprint No. 1970–40 (Queen's University, Kingston, Ontario, 1970).Google Scholar
9.Griffin, M., Valuations and Prüfer rings, Canad. J. Math. 26 (1974), 412429.CrossRefGoogle Scholar
10.Harrison, D. K., Finite and infinite primes for rings and fields (Mem. Amer. Math. Soc. 68), (1966).Google Scholar
11.Huckaba, J. A., On valuation rings that contain zero divisors, Proc. Amer. Math. Soc. 40 (1973), 915.CrossRefGoogle Scholar
12.Kirby, D., Integral dependence and valuation algebras, Proc. London Math. Soc. (3) 20 (1970), 79100.CrossRefGoogle Scholar
13.Kirby, D. and Mehran, H. A., Homomorphisms and the space of valuation modules, Quart. J. Math. Oxford Ser. (2) 21 (1970), 439443.CrossRefGoogle Scholar
14.Kirby, D. and Mehran, H. A., Fractional powers of a submodule of an algebra, Mathematika 18 (1971), 813.CrossRefGoogle Scholar
15.Larsen, M. D. and McCarthy, P. J., Multiplicative theory of ideals (Academic Press, New York, 1971).Google Scholar
16.Manis, M. E., Valuations on a commutative ring, Proc. Amer. Math. Soc. 20 (1969), 193198.CrossRefGoogle Scholar
17.Rand, D. A., Non-unitary valuation subalgebras, Proc. London Math. Soc. (3) 29 (1974), 485501.CrossRefGoogle Scholar
18.Rhodes, C. P. L., Valuation subalgebras and analogues of the decomposition of a radical ideal into prime ideals, Proc. London Math. Soc. (3) 46 (1983), 385410.CrossRefGoogle Scholar
19.Samuel, P., La notion de place dans un anneau, Bull. Soc. Math. France 85 (1957), 123133.CrossRefGoogle Scholar
20.van Geel, J., Places and valuations in noncommutative ring theory (Marcel Dekker, 1981).Google Scholar