Article contents
On weak approximation and convexification in weighted spaces of vector-valued continuous functions
Published online by Cambridge University Press: 18 May 2009
Extract
Let X be a completely regular Hausdorff space. A Nachbin family of weights is a set V of upper-semicontinuous positive functions on X such that if u, υ ∈ V then there exists w ∈ V and t > 0 so that u, υ ≤ tw. For any Hausdorff topological vector space E, the weighted space CV0(X, E) is the space of all E-valued continuous functions f on X such that υf vanishes at infinity for all υ ∈ V. CV0(X, E) is equipped with the weighted topologywv = wv(X, E) which has as a base of neighbourhoods of zero the family of all sets of the form
where υ ∈ Vand W is a neighbourhood of zero in E. If E is the scalar field, then the space CV0(X, E) is denoted by CV0(X). The reader is referred to [4, 6, 8] for information on weighted spaces.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1989
References
- 1
- Cited by