Article contents
POSITIVE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS
Published online by Cambridge University Press: 01 September 2009
Abstract
We consider the system where p(x), q(x) ∈ C1(RN) are radial symmetric functions such that sup|∇ p(x)| < ∞, sup|∇ q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞, where −Δp(x)u = −div(|∇u|p(x)−2∇u), −Δq(x)v = −div(|∇v|q(x)−2∇v), respectively are called p(x)-Laplacian and q(x)-Laplacian, λ1, λ2, μ1 and μ2 are positive parameters and Ω = B(0, R) ⊂ RN is a bounded radial symmetric domain, where R is sufficiently large. We prove the existence of a positive solution when for every M > 0, and . In particular, we do not assume any sign conditions on f(0), g(0), h(0) or γ(0).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2009
References
REFERENCES
- 5
- Cited by