Article contents
Prime and semiprime semigroup rings of cancellative semigroups
Published online by Cambridge University Press: 18 May 2009
Extract
Let S be a cancellative semigroup. This paper is motivated by the problem of finding a description of semigroup rings K[S] over a field K that are semiprime or prime. Results of this type are well-known in the case of a group ring K[G], cf. [8]. The description, as well as the proofs, involve the FC-centre of G defined as the subset of all elements with finitely many conjugates in G. In [4], [5] Krempa extended the FC-centre techniques to the case of an arbitrary cancellative semigroup S. He defined a subsemigroup Δ(S) of S which coincides with the FC-centre in the case of groups, and can be used to describe the centre and to study special elements of K[S]. His results were strengthened by the author in [7], where Δ(S) was also applied in the context of prime and semiprime algebras K[S]. However, Δ(S) itself is not sufficient to characterize semigroup rings of this type. We note that in [2], [3] Dauns developed a similar idea for a study of the centre of semigroup rings and certain of their generalizations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1993
References
REFERENCES
- 4
- Cited by