Article contents
Quotients of F-spaces
Published online by Cambridge University Press: 18 May 2009
Extract
Let X be a non-locally convex F-space (complete metric linear space) whose dual X′ separates the points of X. Then it is known that X possesses a closed subspace N which fails to be weakly closed (see [3]), or, equivalently, such that the quotient space X/N does not have a point separating dual. However the question has also been raised by Duren, Romberg and Shields [2] of whether X possesses a proper closed weakly dense (PCWD) subspace N, or, equivalently a closed subspace N such that X/N has trivial dual. In [2], the space Hp (0<p<1) was shown to have a PCWD subspace; later in [9], Shapiro showed that ℓp (0<p<1) and certain spaces of analytic function have PCWD subspaces. Our first result in this note is that every separable non-locally convex F-space with separating dual has a PCWD subspace.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1978
References
REFERENCES
- 3
- Cited by