No CrossRef data available.
Published online by Cambridge University Press: 01 March 2017
Let (A, ${\mathfrak{m}$) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$-primary ideals with I a reduction of J. For i = 0,. . .,d, let eiJ(A) (eiI(A)) be the ith Hilbert coefficient of J (I), respectively. We call the number ci(I, J) = eiJ(A) − eiI(A) the ith relative Hilbert coefficient of J with respect to I. If GI(A) is Cohen–Macaulay, then ci(I, J) satisfy various constraints. We also show that vanishing of some ci(I, J) has strong implications on depth GJn(A) for n ≫ 0.