Article contents
The smallest proper congruence on S(X)
Published online by Cambridge University Press: 18 May 2009
Extract
S(X) is the semigroup of all continuous self maps of the topological space X and for any semigroup S, Cong(S) will denote the complete lattice of congruences on S. Cong(S) has a zero Z and a unit U. Specifically, Z = {(a, a):a ∈ S} and U = S × S. Evidently, Z and U are distinct if S has at least two elements. By a proper congruence on S we mean any congruence which differs from each of these. Since S(X) has more than one element when X is nondegenerate, we will assume without further mention that the spaces we discuss in this paper have more than one point. We observed in [4] that there are a number of topological spaces X such that S(X) has a largest proper congruence, that is, Cong(S(X)) has a unique dual atom which is greater than every other proper congruence on S(X). On the other hand, we also found out in [5] that it is also common for S(X) to fail to have a largest proper congruence. We will see that the situation is quite different at the other end of the spectrum in that it is rather rare for S(X) not to have a smallest proper congruence. In other words, for most spaces X, Cong(S(X)) has a unique atom which is smaller than every other proper congruence.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1988
References
- 6
- Cited by