Article contents
STAR REDUCIBLE COXETER GROUPS
Published online by Cambridge University Press: 06 December 2006
Abstract
We define “star reducible” Coxeter groups to be those Coxeter groups for which every fully commutative element (in the sense of Stembridge) is equivalent to a product of commuting generators by a sequence of length-decreasing star operations (in the sense of Lusztig). We show that the Kazhdan–Lusztig bases of these groups have a nice projection property to the Temperley–Lieb type quotient, and furthermore that the images of the basis elements $C'_w$ (for fully commutative $w$) in the quotient have structure constants in ${\mathbb Z}^{\geq 0}[v, v^{-1}]$. We also classify the star reducible Coxeter groups and show that they form nine infinite families with two exceptional cases.
- Type
- Research Article
- Information
- Copyright
- 2006 Glasgow Mathematical Journal Trust
- 10
- Cited by