No CrossRef data available.
Article contents
Symplectic bilinear forms on affine real algebraic surfaces
Published online by Cambridge University Press: 18 May 2009
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Given a commutative ring A with identity, let W–1(A) denote the Witt group of skew-symmetric bilinear forms over A (cf. [1] or [7] for the definition of W–1 (A)).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1989
References
1.Barge, J. and Ojanguren, M., Fibrés algébriques sur une surface réelle, Comment. Math. Helv. 62 (1987), 616–629.CrossRefGoogle Scholar
2.Bochnak, J. and Kucharz, W., Sur les classes d'homologie représentables par des hypersurfaces algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 609–611.Google Scholar
3.Borel, A. and Haefliger, A., La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513.CrossRefGoogle Scholar
4.Colliet-Thélène, J. L. and Ischebeck, F., L'èquivalence rationelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 723–725.Google Scholar
5.Fulton, W., Intersection Theory, Ergebnisse der Math. vol. 2 (Springer, 1984).CrossRefGoogle Scholar
6.Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. (2) 79 (1964), 109–326.CrossRefGoogle Scholar
7.Ojanguren, M., Parimala, R. and Sridharan, R., Symplectic bundles over affine surfaces, Comment. Math. Helv. 61 (1986), 491–500.CrossRefGoogle Scholar
8.Silhol, R., Cohomologie de Galois et cohomologie des variétés algébriques réplies; applications aux surfaces rationelles, Bull. Soc. Math. France 115 (1987), 107–125.CrossRefGoogle Scholar
You have
Access