Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T06:23:01.107Z Has data issue: false hasContentIssue false

TIGHT FIBRED KNOTS WITHOUT L-SPACE SURGERIES

Published online by Cambridge University Press:  24 November 2020

FILIP MISEV
Affiliation:
Max Planck Institute for Mathematics, Bonn, Germany, e-mail: fmisev@mpim-bonn.mpg.de
GILBERTO SPANO
Affiliation:
LMNO, Université de Caen-Normandie, Caen, France, e-mails: gilbertospano.math@gmail.com, gilberto.spano@unicaen.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that there exist infinitely many knots of every fixed genus $g\geq 2$ which do not admit surgery to an L-space, despite resembling algebraic knots and L-space knots in general: they are algebraically concordant to the torus knot T(2, 2g + 1) of the same genus and they are fibred and strongly quasipositive.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

References

Berge, J., Some knots with surgeries yielding lens spaces (2018), facsimile of an unpublished manuscript from circa 1990, arXiv:1802.09722.Google Scholar
Boileau, M., Boyer, S. and Gordon, C., Branched covers of quasipositive links and L-spaces, J. Topol. 12 (2019), 536576, arXiv:1710.07658.CrossRefGoogle Scholar
Eisenbud, D. and Neumann, W., Three-dimensional link theory and invariants of plane curve singularities, Ann. Math. Stud. 110 (1985), Princeton University Press, Princeton, NJ, ISBN: 0-691-08380-0; 0-691-08381-9.Google Scholar
Farb, B. and Margalit, D., A primer on mapping class groups (Princeton University Press, Princeton, NJ, 2012).Google Scholar
Ghiggini, P., Knot Floer homology detects genus-one fibred knots, Am. J. Math. 130(5) (2008), 11511169, arXiv:math/0603445.10.1353/ajm.0.0016CrossRefGoogle Scholar
Greene, J. E., The lens space realization problem, Ann. Math. (2) 177(2) (2013), 449511, arXiv:1010.6257.CrossRefGoogle Scholar
Hedden, M., On knot Floer homology and cabling: 2, Int. Math. Res. Not. (12) (2009), 22482274, arXiv:0806.2172.Google Scholar
Hedden, M., Notions of positivity and the Ozsváth-Szabó concordance invariant, J. Knot Theory Ramifications 19(5) (2010), 617629, arXiv:math/0509499.10.1142/S0218216510008017CrossRefGoogle Scholar
Juhász, A., Floer homology and surface decompositions, Geom. Topol. 12(1) (2008), 299350.CrossRefGoogle Scholar
Misev, F., On families of fibred knots with equal Seifert forms, to appear in Communications in Analysis and Geometry (2017), arXiv:1703.07632.Google Scholar
Morton, H. R., Fibred knots with a given Alexander polynomial, in Knots, braids and singularities (Plans-sur-Bex, 1982), Monographs in Mathematics, vol. 31 (European Mathematical Society, Geneva, 1983), 205222.Google Scholar
Moser, L., Elementary surgery along a torus knot, Pacific J. Math. 38(3) (1971), 737745.10.2140/pjm.1971.38.737CrossRefGoogle Scholar
Ni, Y., Knot Floer homology detects fibred knots, Invent. Math. 170(3) (2007), 577608, arXiv:math/0607156.CrossRefGoogle Scholar
Ni, Y., Erratum: Knot Floer homology detects fibred knots, Invent. Math. 177(1) (2009), 235238.10.1007/s00222-009-0174-xCrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic disks and knot invariants, Adv. Math. 186(1) (2004), 58116.10.1016/j.aim.2003.05.001CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., On knot Floer homology and lens space surgeries, Topology 44 (2005) 12811300.10.1016/j.top.2005.05.001CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., On the Heegaard Floer homology of branched double-covers, Adv. Math. 194(1) (2005), 133.10.1016/j.aim.2004.05.008CrossRefGoogle Scholar
Rasmussen, J., Floer homology and knot complements, PhD Thesis (Harvard University, 2003).Google Scholar
Rudolph, L., Constructions of quasipositive knots and links, I, in Nœuds, Tresses, et Singularités (Weber, C., Editor), L’Enseignement Mathématique, vol. 31 (Kundig, Geneva, 1983), 233246.Google Scholar
Seidel, P., A long exact sequence for symplectic Floer cohomology, Topology 42(5) (2003), 10031063, arXiv:math/0105186.10.1016/S0040-9383(02)00028-9CrossRefGoogle Scholar