Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:41:41.009Z Has data issue: false hasContentIssue false

URSCM OR BI-URSCM FOR p-ADIC ANALYTIC OR MEROMORPHIC FUNCTIONS INSIDE A DISK

Published online by Cambridge University Press:  01 January 2007

ABDELBAKI BOUTABAA
Affiliation:
Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France e-mail: Abdelbaki.Boutabaa@math.univ-bpclermont.frAlain.Escassut@math.univ-bpclermont.fr
ALAIN ESCASSUT
Affiliation:
Laboratoire de Mathématiques Pures, Université Blaise Pascal (Clermont-Ferrand), Les Cézeaux, 63177 Aubiere Cedex, France e-mail: Abdelbaki.Boutabaa@math.univ-bpclermont.frAlain.Escassut@math.univ-bpclermont.fr
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value. In a previous paper, we had found URSCM of 7 points for the whole set of unbounded analytic functions inside an open disk. Here we show the existence of URSCM of 5 points for the same set of functions. We notice a characterization of BI-URSCM of 4 points (and infinity) for meromorphic functions in K and can find BI-URSCM for unbounded meromorphic functions with 9 points (and infinity). The method is based on the p-Adic Nevanlinna Second Main Theorem on 3 Small Functions applied to unbounded analytic and meromorphic functions inside an open disk and we show a more general result based upon the hypothesis of a finite symmetric difference on sets of zeros, counting multiplicities.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

References

REFERENCES

1.Adams, W. W. and Straus, E. G., Non archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971) 418424.CrossRefGoogle Scholar
2.Boutabaa, A., Théorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), 251269.CrossRefGoogle Scholar
3.Boutabaa, A., Escassut, A. and Haddad, L., On uniqueness of p-adic entire functions, Indag. Math. 8 (1997), 145155.CrossRefGoogle Scholar
4.Boutabaa, A. and Escassut, A., On uniqueness of p-adic meromorphic functions, Proc. Amer. Math. Soc. 126 (1998), 25572568.CrossRefGoogle Scholar
5.Boutabaa, A. and Escassut, A., Urs and ursim for p-adic meromorphic functions inside a p-adic disk, Proc. Edinburgh Math. Soc. 44 (2001), 485504.CrossRefGoogle Scholar
6.Cherry, W. and Yang, C. C., Uniqueness of non-archimedean entire functions sharing sets of values counting multiplicities, Proc. Amer. Math. Soc. 127 (1998), 967971.CrossRefGoogle Scholar
7.Boutabaa, A. and Escassut, A., URS' for Weierstrass products without exponential factors, Complex Var. Theory Appl. 47 (2002), 409415.Google Scholar
8.Escassut, A., Haddad, L. and Vidal, R., Urs, ursim and non-urs for p-adic functions and polynomials, J. Number Theory 75 (1999), 133144.CrossRefGoogle Scholar
9.Escassut, A. and Yang, C. C., The functional equation P(f)=Q(g) in a p-adic field, J. Number Theory 105 (2004), 344360.CrossRefGoogle Scholar
10.Frank, G. and Reinders, M., A unique range set for meromorphic functions with 11 elements, Complex Variable Theory Appl. 37 (1998), 185193.Google Scholar
11.Fujimoto, H., On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math. 122 (2000), 11751203.CrossRefGoogle Scholar
12.Gross, F. and Yang, C. C., On preimage and range sets of meromorphic functions, Proc. Japan Acad. 58 (1982), 1720.Google Scholar
13.Khoai, Ha Huy and An, Ta Thi Hoai, On uniqueness polynomials and bi-URs for p-adic meromorphic functions, J. Number Theory 87 (2001), 211221.CrossRefGoogle Scholar
14.Hu, P. C. and Yang, C. C., A unique range set of p-adic functions meromorphic functions with 10 elements, Acta Math. Vietnam. 24 (1999), 95108.Google Scholar
15.Hu, P. C. and Yang, C. C., Meromorphic functions over non archimedean fields, Mathematics and its applications, vol. 522 (Kluwer, 2000).CrossRefGoogle Scholar
16.Li, P. and Yang, C. C., On the unique range set of meromorphic functions, Proc. Amer. Math. Soc. 124 (1996), 177185.CrossRefGoogle Scholar
17.Ojeda, J., Applications of the p-adic Nevanlinna theory to problems of uniqueness, preprint.Google Scholar