Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T04:04:52.889Z Has data issue: false hasContentIssue false

VANISHING OF (CO)HOMOLOGY OVER DEFORMATIONS OF COHEN-MACAULAY LOCAL RINGS OF MINIMAL MULTIPLICITY

Published online by Cambridge University Press:  12 October 2018

DIPANKAR GHOSH*
Affiliation:
Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri, Kelambakkam, Chennai 603103, Tamil Nadu, India e-mail: dghosh@cmi.ac.in
TONY J. PUTHENPURAKAL*
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India e-mail: tputhen@math.iitb.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

Abhyankar, S. S., Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 10731077.CrossRefGoogle Scholar
Auslander, M., Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631647.CrossRefGoogle Scholar
Auslander, M. and Buchweitz, R.-O., The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France 38 (1989), 537.CrossRefGoogle Scholar
Avramov, L. L., Modules with extremal resolutions, Math. Res. Lett. 3 (1996), 319328.CrossRefGoogle Scholar
Avramov, L. L., Infinite free resolutions, Six lectures on commutative algebra, Bellaterra 1996, Progr. Math. 166, (Birkhäuser, Basel, 1998), 1118.Google Scholar
Avramov, L. L. and Buchweitz, R.-O.. Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285318.CrossRefGoogle Scholar
Avramov, L. L., Buchweitz, R.-O. and Şega, L. M., Extensions of a dualizing complex by its ring: Commutative versions of a conjecture of Tachikawa, J. Pure Appl. Algebra 201 (2005), 218239.CrossRefGoogle Scholar
Brennan, J. P., Herzog, J. and Ulrich, B., Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), 181203.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Revised Edition, (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Celikbas, O., Dao, H. and Takahashi, R., Modules that detect finite homological dimensions, Kyoto J. Math. 54 (2014), 295310.CrossRefGoogle Scholar
Dutta, S. P., Syzygies and homological conjectures, in Commutative algebra, Berkeley, CA, 1987, Math. Sci. Res. Inst. Publ., vol. 15 (Springer, New York, 1989) 139156.CrossRefGoogle Scholar
Eisenbud, D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics vol. 150 (Springer-Verlag, New York, 1995).Google Scholar
Ghosh, D., Some criteria for regular and Gorenstein local rings via syzygy modules, J. Algebra Appl. Available at: https://doi.org/10.1142/S021949881950097X.Google Scholar
Ghosh, D., Gupta, A. and Puthenpurakal, T. J., Characterizations of regular local rings via syzygy modules of the residue field, J. Commut. Algebra. Available at: https://projecteuclid.org/euclid.jca/1491379239.Google Scholar
Gulliksen, T. H., A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167183.CrossRefGoogle Scholar
Gulliksen, T. H., On the deviations of a local ring, Math. Scand. 47 (1980), 520.CrossRefGoogle Scholar
Heitmann, R., A counterexample to the rigidity conjecture for rings, Bull. Amer. Math. Soc. 29 (1993), 9497.CrossRefGoogle Scholar
Herzog, J., Ulrich, B. and Backelin, J., Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), 187202.CrossRefGoogle Scholar
Huckaba, S. and Marley, T., Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc. 56 (1997), 6476.CrossRefGoogle Scholar
Huneke, C. and Jorgensen, D. A., Symmetry in the vanishing of Ext over Gorenstein rings, Math. Scand. 93 (2003), 161184.CrossRefGoogle Scholar
Huneke, C. and Wiegand, R., Tensor products of modules, rigidity and local cohomology, Math. Scand. 81 (1997), 161183.CrossRefGoogle Scholar
Jorgensen, D. A., A generalization of the Auslander-Buchsbaum formula, J. Pure Appl. Algebra 144 (1999), 145155.CrossRefGoogle Scholar
Jorgensen, D. A., Complexity and Tor on a complete intersection, J. Algebra 211 (1999), 578598.CrossRefGoogle Scholar
Jorgensen, D. A. and Leuschke, G. J., On the growth of the Betti sequence of the canonical module, Math. Z. 256 (2007), 647659.CrossRefGoogle Scholar
Jorgensen, D. A. and Şega, L. M., Nonvanishing cohomology and classes of Gorenstein rings, Adv. Math. 188 (2004), 470490.CrossRefGoogle Scholar
Lam, T. Y., A First Course in Noncommutative Rings, 2nd Edition (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
Lichtenbaum, S., On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966), 220226.CrossRefGoogle Scholar
Martsinkovsky, A., A remarkable property of the (co) syzygy modules of the residue field of a nonregular local ring, J. Pure Appl. Algebra 110 (1996), 913.CrossRefGoogle Scholar
Matsumura, H., Commutative Ring Theory (Cambridge University Press, Cambridge, 1986).Google Scholar
Murthy, M. P., Modules over regular local rings, Illinois J. Math. 7 (1963), 558565.CrossRefGoogle Scholar
Nasseh, S. and Takahashi, R., Local rings with quasi-decomposable maximal ideal, Math. Proc. Cambridge Philos. Soc. Available at: https://doi.org/10.1017/S0305004118000695.Google Scholar
Puthenpurakal, T. J., Hilbert-coefficients of a Cohen-Macaulay module, J. Algebra 264 (2003), 8297.CrossRefGoogle Scholar
Rotman, J. J., An introduction to homological algebra, 2nd Edition, Universitext (Springer, New York, 2009).CrossRefGoogle Scholar
Takahashi, R., Syzygy modules with semidualizing or G-projective summands, J. Algebra 295 (2006), 179194.CrossRefGoogle Scholar
Tate, J., Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957), 1427.CrossRefGoogle Scholar