Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T12:49:04.622Z Has data issue: false hasContentIssue false

Double Shine: Hegel's Logical Theory of Concept

Published online by Cambridge University Press:  10 August 2022

Zhili Xiong*
Affiliation:
Peking University, Beijing, China xiongzhili2010@outlook.com
Get access

Abstract

The current debate surrounding Hegel's logical theory of the concept revolves around Hegel's concept of ‘double shine’. After presenting the relevant positions of the discussants and elucidating their differences, the author tries to advance the current discussion by commenting on these differences. In doing so, the author argues that the essence- and concept-logical background of ‘shine’ and ‘double shine’ respectively is crucial for the understanding of the double shine.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Hegel Society of Great Britain

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandom, R. (2019), A Spirit of Trust. Cambridge: Harvard University Press.Google Scholar
Iber, C. (2002), ‘Hegels Konzeption des Begriffs’, in Koch, A. F. and Schick, F. (eds.), Wissenschaft der Logik. Berlin: Akademie.Google Scholar
Moss, G. S. (2020), Hegel's Foundation Free Metaphysics. New York: Routledge.CrossRefGoogle Scholar
Ng, K. (2020), Hegel's Concept of Life. Oxford: Oxford University Press.CrossRefGoogle Scholar
Schick, F. (1994), Hegels Wissenschaft der Logik—metaphysische Letztbegründung oder Theorie logischer Formen ? Freiburg: Karl Alber.Google Scholar
Schick, F. (2018), ‘Die Lehre vom Begriff. Erster Abschnitt. Die Subjektivität’, in Quante, M. and Mooren, N. (eds.), Kommentar zu Hegels Wissenschaft der Logik. Hamburg: Felix Meiner.Google Scholar
Trisokkas, I. (2009), ‘The Speculative Logical Theory of Universality’, Owl of Minerva 40:2: 141–72.CrossRefGoogle Scholar