Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T07:04:55.911Z Has data issue: false hasContentIssue false

The Cosmic Microwave Background Spectrum: Theoretical Framework

Published online by Cambridge University Press:  30 March 2016

G. De Zotti
Affiliation:
Osservatorio Astronomico and Dipartimento di AstronomiaVicolo dell’Osservatorio, 5 I-35122 Padova, Italy
C. Burigana
Affiliation:
Osservatorio Astronomico and Dipartimento di AstronomiaVicolo dell’Osservatorio, 5 I-35122 Padova, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Preliminary analyses of COBE/FIRAS data have already produced a spectacularly accurate determination of the microwave background spectrum for 1 cm ≤ λ ≤ 500 μm. The absence of detectable deviations from a blackbody spectrum sets strong constraints on physical conditions of the intergalactic plasma and, in particular, has ruled out the possibihty of a truly diffuse thermal bremsstrahlung origin of the X-ray background. General arguments suggest that comptonization distortions due to heating of the intergalactic medium associated with the formation of cosmic structures, with hot protogalactic winds, or with the ionizing flux from AGNs, are likely to be very small (comptonization parameter y ≲, 10-4). A larger signal is expected from the integrated re-radiation from dust in external galaxies; to what extent this may conceal possible comptonization distortions depends on the maximum redshift at which galaxies contain substantial amounts of dust and on the temperature distribution of dust grains. In any case, a precise determination of either the y parameter or the background from distant galaxies requires a careful subtraction of the emission from the Milky Way.

The great success of COBE strengthens the need for a parallel improvement in the accuracy of spectral measurements in the Rayleigh-Jeans region, where imprints of physical processes occurring at very early epochs (such as, e.g., the dissipation of small scale density inhomogeneities) may show up.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1992

References

REFERENCES

Barcons, X., Fabian, A.C., & Rees, M.J., 1991. Nature, 350, 685.Google Scholar
Barrow, J.D., & Coles, P., 1991. MNRAS, 248, 52.Google Scholar
Bartlett, J.G., & Stebbins, A., 1991. ApJ, 371, 8.Google Scholar
Beichman, C.A., & Helou, G., 1991. ApJ, 370, L1.CrossRefGoogle Scholar
Bond, J.R., Carr, B.J., & Hogan, C.J., 1991. ApJ, 367, 420.Google Scholar
Bowyer, S., & Leinert, C. (eds.), 1990. Proc. IAU Symp. No. 139, “Galactic and Extragalactic Background Radiation, Kluwer.Google Scholar
Burigana, C, Danese, L., & De Zotti, G., 1991a. A&A, 246, 59.Google Scholar
Burigana, C, De Zotti, G., & Danese, L., 1991b. ApJ, 379 1.Google Scholar
Cavaliere, A., Menci, N., & Setti, G., 1991. A&A, 245, L21.Google Scholar
Cen, R.Y., Jameson, A., Liu, F., & Ostriker, J.P., 1990. ApJ, 362, L41.Google Scholar
Cowie, L.L., 1989. In Proc. 23rd ESLAB Symp. “Two topics in X-ray Astronomy”, ESA SP-296, p. 707.Google Scholar
Cowie, L.L., Gardner, J.P., Lilly, S.J., & McLean, I., 1990. ApJ, 360, L1.Google Scholar
Daly, R.A., 1991. ApJ, 371, 14.Google Scholar
Daly, R.A., & Turner, E.L., 1988. Comm. Ap., 12, 219.Google Scholar
Danese, L., De Zotti, G., Franceschini, A., & Toffolatti, L., 1987. ApJ, 318, L15.CrossRefGoogle Scholar
Désert, F.-X., & Puget, J.-L., 1990. Proc. IAU Symp. No. 139, “Galactic and Extragalactic Background Radiation, Kluwer, p. 381.Google Scholar
Fabbiano, G., 1990. ARAA, 27, 87.Google Scholar
Field, G.B., & Perrenod, S.C., 1977. ApJ, 215, 717.Google Scholar
Franceschini, A., Toffolatti, L., Mazzei, P., Danese, L., & De Zotti, G., 1991. A&AS, 89 285.Google Scholar
Griffiths, R.E., & Padovani, P., 1990. ApJ, 360, 483.Google Scholar
Gush, H.P., Halpern, M., & Wishnow, E.H., 1990. Phys. Rev. Lett., 65, 537.CrossRefGoogle Scholar
Hacking, P.B., Condon, J.J., & Houck, J.R., 1987. ApJ, 316, L15.Google Scholar
Hacking, P.B., & Soifer, B.T., 1991. ApJ, 367, L49.Google Scholar
Hauser, M.G., Kelsall, T., Moseley, S.H. Jr., Silverberg, R.F., Murdock, T., Toller, G., Spiesman, W., & Weiland, J., 1991. In Proc. workshop “After the First Three Minutes”, in press.Google Scholar
Lange, A.E., Richards, P.L., Hayakawa, S., Matsumoto, T., Matsuo, H., Murakami, H., & Sato, S., 1990. Private comm. to Hauser et al. (1991).Google Scholar
Mather, , et al, 1990. ApJ, 354, L37.CrossRefGoogle Scholar
MacGibbon, J., & Carr, B.J., 1991. Preprint.Google Scholar
Miralda-Escudé, J., & Ostriker, J.P., 1990. ApJ, 350, 1.Google Scholar
Noda, M., Christov, V.V., Matsuhara, H., Matsumoto, T., Matsuura, S., Noguchi, K., & Sato, S., 1991. Preprint.Google Scholar
Ostriker, J.P., & Thompson, C., 1987. ApJ, 323, L97.CrossRefGoogle Scholar
Padovani, P., 1989. A&A, 209, 27.Google Scholar
Padovani, P., Burg, R., & Edelson, R.A., 1990. ApJ, 353, 438.Google Scholar
Rudak, B., & Panek, M., 1987. Phys. Lett. B, 199, 346.Google Scholar
Saunders, W., Rowan-Robinson, M., Lawrence, A., Efstathiou, G., Kaiser, N., Ellis, R.S., & Frenk, C.S., 1990. MNRAS, 242, 318.Google Scholar
Sciama, D.W., 1990. In “The Cosmic Microwave Background: 25 Years later”, Mandolesi, N. & Vittorio, N. eds., Kluwer, p. 1.Google Scholar
Signore, M., & Sanchez, N., 1991. Preprint.Google Scholar
Songaila, A., Cowie, L.L., & Lilly, S.J., 1990. ApJ, 348, 371.Google Scholar
Sunyaev, R.A., & Zeldovich, , Ya, B., 1970. Ap. Space Sci., 7, 20.Google Scholar
Tyson, J.A., 1990. Proc. IAU Symp. No. 139, “Galactic and Extragalactic Background Radiation, Kluwer, p. 245.Google Scholar
Wang, B., 1991. ApJ, 374, 465.Google Scholar
Weymann, R., 1966. ApJ, 145, 560.Google Scholar
Wright, E.L., 1991. In Proc. Texas-ESO/CERN Symp., in press.Google Scholar
Yoshioka, S., & Ikeuchi, S., 1987. ApJ, 323, L7.Google Scholar
Zeldovich, , Ya, B., & Sunyaev, R.A., 1969. Ap. Space Sci., 4, 301.CrossRefGoogle Scholar