Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T16:09:30.007Z Has data issue: false hasContentIssue false

The Determination of Angular Diameters of Stars

Published online by Cambridge University Press:  30 March 2016

John Davis*
Affiliation:
School of Physics, University of Sydney, Sydney, Australia

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ideally the determination of the angular diameter of a star would include the measurement of the distribution of intensity across the stellar disc. However, direct methods of measuring angular diameters have so far lacked adequate ‘signal to noise’ ratio to measure the intensity distribution and it has been the custom, in the first instance, to express the measured angular diameter in terms of the angular diameter of the equivalent uniform disc UD). Subsequent use of the angular diameter involves the assumption of a limb-darkening law and the application of an appropriate correction to θUD to find the ‘true’ angular diameter LD) of the star (e.g. Hanbury Brown et al., 1967). In this article we will discuss the determination of θUD for single stars and we will not refer further to the more difficult problems of determining intensity distributions involving limb-darkening and rotational effects and of measuring the angular parameters of binary systems.

By itself the angular diameter of a star has no intrinsic value but when it is combined with other observational data it enables basic physical properties of the star to be determined. It is then possible to make a direct comparison of the observed properties of the star with the predictions of theoretical models of stellar atmospheres and interiors. For example, the combination of an angular diameter with the absolute monochromatic flux received from the star (ƒν), corrected for interstellar extinction, yields the absolute emergent flux at the stellar surface (). If the spectral energy distribution for the star is known it can be calibrated absolutely by and hence the effective temperature (Te) of the star can be found (this is equivalent to knowing the bolometric correction for the star and using it with the angular diameter to find Te). In addition to leading to the determination of Te, the absolute surface flux distribution may be compared directly with the predicted flux distributions for theoretical model stellar atmospheres (e.g. Davis and Webb, 1970). For O and early B. type stars a large fraction of the emergent flux is in the far ultra-violet and the effective temperatures cannot be determined from the, at present, incomplete empirical flux curves. In these cases it is possible to obtain an estimate of the effective temperatures by using the values of to calibrate a grid of model atmospheres which have Te as a parameter. In this way, by measuring the angular diameters of stars of different spectral types, it is possible to establish an effective temperature scale.

Type
III. Joint Discussions
Copyright
Copyright © Reidel 1971

References

References

[1] Hanbury Brown, R., Davis, J., Herbison-Evans, D., and Allen, L. R.: 1970, Monthly Notices Roy. Astron. Soc. 148, 103.Google Scholar
[2] Davis, J., Morton, D. C., Allen, L. R., and Hanbury Brown, R.: 1970, Monthly Notices Roy. Astron. Soc. 150, 45.CrossRefGoogle Scholar
[3] Hanbury Brown, R., Davis, J., Allen, L. R.,and Rome, J. M.: 1967, Monthly Notices Roy. Astron. Soc. 137, 393.CrossRefGoogle Scholar
[4] Herbison-Evans, D., Hanbury Brown, R., Davis, J., and Allen, L. R.: 1971, Monthly Notices Roy. Astron. Soc. 151, 161.CrossRefGoogle Scholar
[5] Pease, F. G.: 1931, Ergebn. Exakt. Naturw. 10, 84.Google Scholar
[6] Evans, D. S.: 1955, Monthly Notices Roy. Astron. Soc. 115, 468.Google Scholar
[7] Taylor, J. H.: 1966, Nature 210, 1105.CrossRefGoogle Scholar
[8] Nather, R. E., McCants, M. M., and Evans, D. S.: 1970, Astrophys. J. Letters 160, L181 CrossRefGoogle Scholar
[9] Evans, D. S.: 1959, Monthly Notices Astron. Soc. Sth. Afr. 18, 158.Google Scholar

References

Beavers, W.: 1963, Astron. J. 68, 273.CrossRefGoogle Scholar
Cousins, A.W.J. and Guelke, R.: 1963, Monthly Notices Roy. Astron. Soc. 111, 776.Google Scholar
Davis, J., Morton, D. C., Allen, L. R., and Hanbury Brown, R.: 1970, Monthly Notices Roy. Astron. Soc. 150, 45.CrossRefGoogle Scholar
Davis, J. and Webb, R. J.: 1970, Proc. Astron. Soc. Australia 1, 378.Google Scholar
Diercks, H. and Hunger, K.: 1952, Z. Astrophys. 31, 182.Google Scholar
Evans, D. S.: 1955a, Astron. J. 60. 432.CrossRefGoogle Scholar
Evans, D. S.: 1955b, Monthly Notices Roy. Astron. Soc. 115, 468.Google Scholar
Evans, D. S.: 1957, Astron. J. 62, 83.Google Scholar
Evans, D. S.: 1959, Monthly Notices Roy Astron. Soc. Sth. Afr. 18, 158.Google Scholar
Evans, D. S.: 1970, Astron. J. 75, 589.Google Scholar
Evans, D. S., Heydenrych, J.C.R., and van Wyk, J.D.N.: 1953, Monthly Notices Roy. Astron. Soc. 111,781.CrossRefGoogle Scholar
Hanbury Brown, R.: 1968, Ann. Rev. Astron. Astrophys. 6, 13.Google Scholar
Hanbury Brown, R., Davis, J., Alien, L. R., and Rome, J. M.: 1967, Monthly Notices Roy. Astron. Soc. 137, 393.CrossRefGoogle Scholar
Hanbury Brown, R., Davis, J., Herbison-Evans, D., and Alien, L. R.: 1970, Monthly Notices Roy. Astron. Soc. 148, 103.Google Scholar
Hanbury Brown, R. and Twiss, R. Q.: 1956, Nature 178, 1046.Google Scholar
Hanbury Brown, R. and Twiss, R. Q.: 1958, Proc. Roy. Soc. London Ser. A 248, 199.Google Scholar
Harris, D. L.: 1963, in Basic Astronomical Data (ed. by Strand, K.Aa.), Univ. of Chicago Press, Chicago, p. 263.Google Scholar
Herbison-Evans, D., Hanbury Brown, R., Davis, J., and Allen, L. R.: 1971, Monthly Notices Roy. Astron. Soc. 151, 161.Google Scholar
Jenkins, L. F.: 1963, Supplement to the General Catalogue of Trigonometric Stellar Parallaxes, Yale University Observatory.Google Scholar
Kuiper, G. P.: 1938, Astrophys. J. 88, 429.Google Scholar
Michelson, A. A. and Pease, F. G.: 1921, Astrophys. J. 53, 249.Google Scholar
Miller, R. H.: 1966, Science 153, 581.CrossRefGoogle Scholar
Nather, R. E., McCants, M. M., and Evans, D. S.: 1970, Astrophys. J. Letters 160, L181.Google Scholar
Pease, F. G.: 1931, Ergebn. Exakt. Naturw. 10, 84.Google Scholar
Popper, D. M.: 1959, Astrophys. J. 129, 647.Google Scholar
Taylor, J. H.: 1966 Nature 210, 1105.Google Scholar
Twiss, R. Q.: 1965, Observatory 85, 947.Google Scholar
Twiss, R. W.: 1969, Opt. Acta 16, 423.Google Scholar
Whitford, A. E.: 1939, Astrophys. J 89, 472 Google Scholar
Whitford, A. E.: 1946, Sky Telesc. 6,7.Google Scholar