Published online by Cambridge University Press: 30 March 2016
Observed hydrogen line profiles are an enormously important source of diagnostic information about virtually all kinds of astronomical bodies. Therefore, it is important to understand the hydrogen line formation in sufficient detail to be able to achieve a high degree of reliability by analyzing observed hydrogen line profiles.
Calculation of the predicted hydrogen line profiles involves two basic ingredients, (i) intrinsic line profiles, or line broadening - ”atomic physics” part, and (ii) the radiative transfer problem - ”astrophysics” part. There is not enough space to discuss here the current status of the astrophysical part of the problem. Fortunately, this topic is covered by many reviews. There are two major problems here, (a) departures from local thermodynamic equilibrium (LTE) - the so-called non-LTE description (e.g. Mihalas 1978; Hubeny et al. 1994); and (b) departures from complete frequency redistribution (Cooper et al. 1989; Hubeny and Lites 1994).