Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T18:26:03.741Z Has data issue: false hasContentIssue false

Hydrogen Line Profiles

Published online by Cambridge University Press:  30 March 2016

I. Hubeny*
Affiliation:
Universities Space Research Association NASA/GSFC, Code 681, Greenbelt, MD 20771, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observed hydrogen line profiles are an enormously important source of diagnostic information about virtually all kinds of astronomical bodies. Therefore, it is important to understand the hydrogen line formation in sufficient detail to be able to achieve a high degree of reliability by analyzing observed hydrogen line profiles.

Calculation of the predicted hydrogen line profiles involves two basic ingredients, (i) intrinsic line profiles, or line broadening - ”atomic physics” part, and (ii) the radiative transfer problem - ”astrophysics” part. There is not enough space to discuss here the current status of the astrophysical part of the problem. Fortunately, this topic is covered by many reviews. There are two major problems here, (a) departures from local thermodynamic equilibrium (LTE) - the so-called non-LTE description (e.g. Mihalas 1978; Hubeny et al. 1994); and (b) departures from complete frequency redistribution (Cooper et al. 1989; Hubeny and Lites 1994).

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1995

References

Allard, N., Kielkopf, J.F., 1991, A&A 242, 133.Google Scholar
Allad, N., Koester, D., 1992, A&A 258, 464.Google Scholar
Brissaud, A., Frisch, U. (1971) J.Q.S.R.T. 11, 1767.Google Scholar
Cooper, J., Smith, E.W., and Vidal, C.R. (1974) J. Phys. B, 7, L101.CrossRefGoogle Scholar
Cooper, J., Ballagh, R.J., and Hubeny, I. (1989) ApJ 344, 949.Google Scholar
Däppen, W., Anderson, L.S., and Mihalas, D. (1987) ApJ 319, 195.Google Scholar
Griem, H., (1974) Spectral Line Broadening by Plasmas. Academic Press, New York.Google Scholar
Griem, H., Kolb, A.C., and Shen, K.Y. (1959) Phys. Rev., 116, 4.CrossRefGoogle Scholar
Hubeny, I., Lites, B.W. (1994) ApJ (in press).Google Scholar
Hubeny, I., Hummer, D.G., and Lans, T. (1994) A&A 282, 157.Google Scholar
Hummer, D.G., Mihalas, D. (1988) ApJ 331, 794.CrossRefGoogle Scholar
Mathis, G. (1984) A&A 130, 196.Google Scholar
Mihalas, D. (1978) Stellar Atmospheres. Freeman, , San Francisco.Google Scholar
Seaton, M. (1990) J. Phys. B 23, 3255.Google Scholar
Smith, E.W., Cooper, J., and Vidal, C.R. (1969) Phys. Rev. 185, 140.Google Scholar
Stehlé, C., Feautrier, N. (1984) Ann Phys. Fr. 9, 697.Google Scholar
Stehlé, C., Feautrier, N. (1985) J. Phys. B. 18, 1297 CrossRefGoogle Scholar
Stehlé, C., Jacquemot, S. (1993) A&A 271, 348.Google Scholar
Stehlé, C., Masure, A., Nolles, G., and Feautrier, N. (1983) A&A 127, 263.Google Scholar
Vidal, C.R., Cooper, J., and Smith, E.W. (1973) ApJS 25, 37.Google Scholar
Voslamber, D. (1969) Z. Naturf. 24a, 1458.Google Scholar