Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T18:35:47.394Z Has data issue: false hasContentIssue false

roAp stars

Published online by Cambridge University Press:  30 March 2016

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the A stars there is a subclass of peculiar stars, the Ap stars, which show strongly enhanced spectral lines of the Fe peak, rare earth and lanthanide elements. These stars have global surface magnetic fields several orders of magnitude larger than that of the Sun, 0.3 to 30 kGauss is the measured range. For stars with the strongest magnetic fields, the spectral lines are split by the Zeeman Effect and the surface magnetic field strength can be measured. Generally, though, the magnetic fields are not strong enough for the magnetic splitting to exceed other sources of line broadening. In these cases residual polarization differences between the red and blue wings of the spectral lines give a measure of the effective magnetic field strength - the integral of the longitudinal component of the global magnetic field over the visible hemisphere, weighted by limb-darkening. In the Ap stars the effective magnetic field strengths vary with rotation. This is well understood in terms of the oblique rotator model in which the magnetic axis is oblique to the rotation axis, so that the magnetic field is seen from varying aspect with rotation.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1995