Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T23:19:24.322Z Has data issue: false hasContentIssue false

UV Bright Stars and Planetary Nebulae in Elliptical Galaxies

Published online by Cambridge University Press:  30 March 2016

Henry C. Ferguson*
Affiliation:
Space Telescope Science Institute

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Far UV observations and optical studies of planetary nebula luminosity functions (PNLFs) offer complementary views of the late phases of stellar evolution in elliptical galaxies and spiral galaxy bulges. UV spectroscopy reveals that the hot stellar population is composite, with a mix of temperatures that varies from galaxy to galaxy. This changing mix is most likely due to changes in the relative numbers of stars that channel through the Post-Asymptotic Giant Branch (PAGB), Post-Early-AGB (PEAGB) and Extreme Horizontal Branch (EHB) phases of evolution. EHB stars appear to dominate the integrated λ < 2000 Å flux from galaxies with the strongest far-UV emission, but are too faint to resolve individually in even the nearest galaxies. Far UV images of M31 and M32 reveal a population of hot stars that are much brighter, but do not account for the majority of the far-UV flux. The sources detected are most likely low-mass PAGB stars (0.55 < M/M < 0.59). In contrast, the PNLF probes the PAGB star mass function at values greater than ∼ 0.6 M. For a given galaxy the relative numbers of stars in these different branches of evolution are determined by the age and chemical evolution of the galaxy and by the physics of mass loss on the red giant branch. We review current constraints on the mass function of hot evolved stars in elliptical galaxies, highlight a few puzzles, and outline where future observations might contribute.

Type
II. Joint Discussions
Copyright
Copyright © Kluwer 1995

References

1. Welch, G.A. and Code, A.D. In Scientific Results from the Orbiting Astronomical Observatory, Code, A.D., editor, 559. NASA SP-310, (1972).Google Scholar
2. Burstein, D., Bertola, F., Buson, L.M., Faber, S.M., and Lauer, T.R. ApJ 328, 440 (1988).CrossRefGoogle Scholar
3. Ferguson, H.C., et al. ApJ 382, L69 (1991).CrossRefGoogle Scholar
4. Ferguson, H.C. and Davidsen, A.F. ApJ 408, 92 (1993).CrossRefGoogle Scholar
5. Greggio, L. and Renzini, A. ApJ 364, 35 (1990).CrossRefGoogle Scholar
6. Davidsen, A. F. and Ferguson, H.C. In The Physics of Nearby Galaxies: Nature or Nurture?, Thuan, T.X., Balkowski, C., and Van, J.T.T., editors, 125 (Editions Frontieres, Gif-sur-Yvette, 1992).Google Scholar
7. Jacoby, G. H. ApJ 339, 39 (1989).CrossRefGoogle Scholar
8. Piembert, M. Rev. Mexicana Astron. Ap. 20, 119 (1990).Google Scholar
9. Ciardullo, R., Jacoby, G.H., and Harris, W.E. ApJ 383, 487 (1991).CrossRefGoogle Scholar
10. Lee, Y.-W. ApJ 430, L113 (1994).CrossRefGoogle Scholar
11. Fagotto, F., Bressan, A., Bertelli, G., and Chiosi, C. A&AS 105, 39 (1994).Google Scholar
12. Bressan, A., Chiosi, C., and Fagotto, F. Padova preprint, (1994).Google Scholar
13. Renzini, A. A&A 285, L5 (1994).Google Scholar
14. Dorman, B., O’Connell, R. W., and Rood, R.T. preprint, (1994).Google Scholar
15. Liebert, J., Saffer, R.A., and Green, E.M. AJ 107, 1408 (1994).CrossRefGoogle Scholar
16. King, I., et al. ApJ 397, L35 (1992).CrossRefGoogle Scholar
17. Bertola, F., et al. ApJ, submitted (see poster contribution, this conference), (1994).Google Scholar
18. Schönbemer, D. ApJ 272, 708 (1983).CrossRefGoogle Scholar
19. Renzini, A. and Buzzoni, A. In Spectral Evolution of Galaxies, Chiosi, C. and Renzini, A., editors, 195 (Reidel, Dordrecht, 1986).CrossRefGoogle Scholar
20. Ciardullo, R., Jacoby, G.H., Ford, H. C, and Neill, J.D. ApJ 339, 53 (1989).CrossRefGoogle Scholar
21. King, I. private communication, (1994).Google Scholar