Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-19T14:16:57.909Z Has data issue: false hasContentIssue false

Emergence of Glutaraldehyde-Resistant Pseudomonas aeruginosa

Published online by Cambridge University Press:  02 January 2015

Sarah Tschudin-Sutter
Affiliation:
Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
Reno Frei
Affiliation:
Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland
Günter Kampf
Affiliation:
Bode Chemie, Scientific Affairs, Hamburg, Germany Institute for Hygiene and Environmental Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
Michael Tamm
Affiliation:
Division of Pulmonary Medicine, University Hospital Basel, Basel, Switzerland
Eric Pflimlin
Affiliation:
Division of Medical Diagnostics, University Hospital Basel, Basel, Switzerland
Manuel Battegay
Affiliation:
Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
Andreas Franz Widmer*
Affiliation:
Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
*
Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland (widmerA@uhbs.ch)

Abstract

Objective.

In November 2009, routine sampling of endoscopes performed to monitor the effectiveness of the endoscope-cleaning procedure at our hospital detected Pseudomonas aeruginosa. Herein we report the results of the subsequent investigation.

Design and Methods.

The investigation included environmental cultures for source investigation, molecular analysis by pulsed-field gel electrophoresis (PFGE) to reveal the identity of the strains, and determination of the bactericidal activity of the glutaraldehyde-based disinfectant used for automated endoscope reprocessing. In addition, patient outcome was analyzed by medical chart review, and incidence rates of clinical samples with P. aeruginosa were compared.

Setting.

The University Hospital of Basel is an 855-bed tertiary care center in Basel, Switzerland. Approximately 1,700 flexible bronchoscopic, 2,500 gastroscopic, 1,400 colonoscopic, 140 endoscopic retrograde cholangiopancreatographic, and 140 endosonographic procedures are performed annually.

Results.

P. aeruginosa was detected in samples obtained from endoscopes in November 2009 for the first time since the initiation of surveillance in 2006. It was found in the rinsing water and in the drain of 1 of the 2 automated endoscope reprocessors. PFGE revealed 2 distinct P. aeruginosa strains, one in each reprocessor. The glutaraldehyde-based disinfectant showed no activity against the 2 pseudo-outbreak strains when used in the recommended concentration under standard conditions. After medical chart review, 6 patients with lower respiratory tract and bloodstream infections were identified as having a possible epidemiological link to the pseudo-outbreak strain.

Conclusions.

This is the first description of a pseudo-outbreak caused by P. aeruginosa with reduced susceptibility to an aldehyde-based disinfectant routinely used in the automated processing of endoscopes.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Centers for Disease Control and Prevention. Vital and health statistics: ambulatory and inpatient procedures in the United States, 1996. http:/www.cdc.gov/nchs/data. Accessed March 15, 2003.Google Scholar
2. Kimmey, MB, Burnett, DA, Carr-Locke, DL, et al. Transmission of infection by gastrointestinal endoscopy. ASGE Technology Assessment Committee position paper. Gastrointest Endosc 1993; 39:885888.Google Scholar
3. Centers for Disease Control and Prevention. Bronchoscopy related infections and pseudo infections: New York, 1996 and 1998. MMWR Morb Mortal Wkly Rep 1999;48:557560.Google Scholar
4. Spach, DA, Silverstein, FE, Stamm, WE. Transmission of infection by gastrointestinal endoscopy and bronchoscopy. Ann Intern Med 1993;118:117128.Google Scholar
5. Srinivasan, A. Epidemiology and prevention of infections related to endoscopy. Curr Infect Dis Rep 2003;5:467472.Google Scholar
6. Culver, DA, Gordon, SM, Mehta, AC. Infection control in the bronchoscopy suite: a review of outbreaks and guidelines for prevention. Am J Respir Crit Care Med 2003;167:10501056.CrossRefGoogle ScholarPubMed
7. Srinivasan, A, Wolfenden, LL, Song, X, et al. An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003;348:221227.Google Scholar
8. Kirschke, DL, Jones, TF, Craig, AS, et al. Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003;348: 214-220.CrossRefGoogle ScholarPubMed
9. Schweizerische Gesellschaft für Gastroenterologie. Empfehlungen zur Desinfektion von flexilblen Endoskopen, 2009. http://www.sggssg.ch/Dokumente/Merkblaetter/Hygiene_Empfehlungeni _2009_D.pdf. Accessed September 29, 2011.Google Scholar
10. Anforderungen an die Hygiene bei der Aufbereitung flexibler Endoskope und endoskopischen Zusatzinstrumentariums Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut (RKI). Bun-desgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 2002; 45:395411. Berlin: Springer, 2002.Google Scholar
11. Deutsche Gesellschaft für Hygiene und Mikrobiologie. Prüfung und Bewertung chemischer Desinfektionsverfahren: Stand 12.07.1991. HygMed 1991;special issue:1-8.Google Scholar
12. Stranden, A, Frei, R, Widmer, AF. Molecular typing of methicillin-resistant Staphylococcus aureus: can PCR replace pulsed-field gel electrophoresis? J Clin Microbiol 2003;41:31813186.CrossRefGoogle ScholarPubMed
13. NNIS manual: National Nosocomial Infection Surveillance System. Alanta: Centers for Disease Control and Prevention, 1994.Google Scholar
14. Russell, AD. Glutaraldehyde: current status and uses. Infect Cont Epidemiol 1994;15:724733.Google Scholar
15. Griffiths, PA, Babb, JR, Bradley, CR, Fraise, AP. Glutaraldehyde-resistant Mycobacterium chelonae for endoscope washer disinfectors. J Appl Microbiol 1998;82:519526.Google Scholar
16. Van Klingeren, B, Pullen, W. Glutaraldehyde resistant mycobacteria from endoscope washers. J Hosp Infect 1993;25:147149.CrossRefGoogle ScholarPubMed
17. Kovacs, BJ, Aprecio, RM, Kettering, JD, Chen, YK. Efficacy of various disinfectants in killing a resistant strain of Pseudomonas aeruginosa by comparing zones of inhibition: implications for endoscopic equipment reprocessing. Am J Gastroenterol 1998; 93:20572059.Google Scholar
18. Lewis, DL, Arens, M. Resistance of microorganisms to disinfection in dental and medical devices. Nat Med 1995;1:956958.CrossRefGoogle ScholarPubMed
19. Malone, JG, Jaeger, T, Spangler, C, et al. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa . PLoS Patfiog 2010;6:e1000804.Google Scholar
20. Wille, B. Possibility of the development of resistance to disinfectants in microorganisms [in German]. Zentralbl Bakteriol Orig B 1976;162:217220.Google Scholar
21. Spicher, G, Peters, J. Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses. Zentralbl Bakteriol Orig B 1976;163:486508.Google ScholarPubMed
22. Hingst, V, Maiwald, M, Sonntag, HG. Investigations on the enzymatic degradation of formaldehyde by isolates of the species Pseudomonas aeruginosa . Zentralbl Bakteriol Hyg B 1987;184: 167181.Google Scholar
23. Kramer, A, Schwebke, I, Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? a systematic review. BMC Infect Dis 2006;6:130.CrossRefGoogle Scholar
24. Sagripanti, JL, Eklund, CA, Trost, PA, et al. Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control 1997;25:335339.CrossRefGoogle ScholarPubMed