Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T07:25:33.811Z Has data issue: false hasContentIssue false

Basic Microbiologic Support for Hospital Epidemiology

Published online by Cambridge University Press:  02 January 2015

Loreen A. Herwaldt
Affiliation:
Emory University Schools of Medicine, and Public Health and Grady Memorial Hospital, Atlanta, Georgia
John E. McGowan Jr*
Affiliation:
Emory University Schools of Medicine, and Public Health and Grady Memorial Hospital, Atlanta, Georgia
Beverly G. Metchock
Affiliation:
Emory University Schools of Medicine, and Public Health and Grady Memorial Hospital, Atlanta, Georgia
*
Clinical Microbiology, Box 26248, Grady Memorial Hospital, 80 Butler St, Atlanta, GA 30335

Abstract

The laboratory plays a major role in the epidemiology program's efforts to minimize nosocomial infections in healthcare institutions. This article will describe some of the interactions between the laboratory and the epidemiology program, and will identify resources and procedures that the laboratory needs to achieve epidemiologic goals.

Type
Practical Healthcare Epidemiology
Copyright
Copyright © The Society for Healthcare Epidemiology of America 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McGowan, JE Jr. New laboratory techniques for hospital infection control. Am J Med 1991;91(suppl 3B):245S251S.CrossRefGoogle ScholarPubMed
2. Arbeit, R. Laboratory procedures for the epidemiologic analysis of microorganisms. In: Murray, PR, Baron, EJ, Pfaller, MA, Tenover, FC, Yolken, RH, eds. Manual of Clinical Microbiology. 6th ed. Washington, DC: American Society for Microbiology; 1995:190208.Google Scholar
3. McGowan, JE Jr Metchock, BG. Infection control epidemiology and clinical microbiology. In: Murray, PR, Baron, EJ, Pfaller, MA, Tenover, FC, Yolken, RH, eds. Manual of Clinical Microbiology. 6th ed. Washington, DC: American Society for Microbiology; 1995:182189.Google Scholar
4. McGowan, JE Jr. Laboratory approach to an outbreak of nosocomial infection: systems and techniques for investigation. In: Cundy, KR, Kleger, B, Hinks, E, Miller, LA, eds. Infection Control: Dilemmas and Practical Solutions. New York, NY: Plenum Press; 1990:2131.CrossRefGoogle Scholar
5. McGowan, JE Jr Weinstein, RA. The role of the laboratory in control of nosocomial infection. In: Bennett, JV, Brachman, PS, eds. Hospital Infections. 3rd ed. Boston, MA: Little Brown and Co; 1992:187220.Google Scholar
6. McGowan, JE Jr. Communication with hospital staff. In: Balows, A, Hausler, WJ Jr Herrmann, KL, Isenberg, HD, Shadomy, HJ, eds. Manual of Clinical Microbiology. 5th ed. Washington, DC: American Society for Microbiology; 1991:151158.Google Scholar
7. Brachman, PS. Epidemiology of nosocomial infections. In: Bennett, JV, Brachman, PS, eds. Hospital Infections. 3rd ed. Boston, MA: Little, Brown and Co; 1992:320.Google Scholar
8. Weigelt, J, Haley, R, Siebert, G. Necessity and efficiency of wound infection surveillance after discharge. Am J Infect Control 1987;16:75. Abstract.Google Scholar
9. Ayliffe, GAJ, Mitchell, K. Incidence of hospital-acquired infection. J Hosp Infect 1993;24:7782.CrossRefGoogle ScholarPubMed
10. Banerjee, SN, Emori, TG, Culver, DH, et al. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-89. Am J Med 1991;91(suppl 3B):86S89S.CrossRefGoogle Scholar
11. Pfaller, MA. Epidemiology and control of fungal infections. Clin Infect Dis 1994;19(suppl 1):8S13S.CrossRefGoogle ScholarPubMed
12. Herwaldt, LA, Wenzel, RP. Dynamics of hospital-acquired infection. In: Murray, PR, Baron, EJ, Pfaller, MA, Tenover, FC, Yolken, RH, eds. Manual of Clinical Microbiology. 6th ed. Washington, DC: American Society for Microbiology; 1995:169181.Google Scholar
13. Bergogne-Berezine, E, Decre, D, Joly-Guillou, ML. Opportunistic nosocomial multiply resistant bacterial infections—their treatment and prevention. J Antimicrob Chemother 1993;32:3947.CrossRefGoogle Scholar
14. Jones, RN, Kehrberg, EN, Erwin, ME, Anderson, SC. Prevalence of important pathogens and antimicrobial activity of parenteral drugs at numerous medical centers in the United States, I: study on the threat of emerging resistances: real or perceived? Fluoroquinolone Resistance Surveillance Group. Diagn Microbiol Infect Dis 1994;19:203215.CrossRefGoogle ScholarPubMed
15. McGowan, JE Jr Metchock, BG. Penicillin-resistant pneumococci: an emerging threat to successful therapy. J Hosp Infect 1995;30(suppl):472482.CrossRefGoogle ScholarPubMed
16. Relman, DA. The identification of uncultured microbial pathogens. J Infect Dis 1993;168:18.Google ScholarPubMed
17. Dale, B, Dragon, B. Polymerase chain reaction in infectious disease diagnosis. Lab Medicine 1994;25:637641.CrossRefGoogle Scholar
18. Dixon, RE. Investigation of endemic and epidemic nosocomial infections. In: Bennett, JV, Brachman, PS, eds. Hospital Infections. 3rd ed. Boston, MA: Little, Brown and Co; 1992:109133.Google Scholar
19. McGowan, JE Jr. Nosocomial tuberculosis: new progress in control and prevention. Clin Infect Dis 1995;21:489505.CrossRefGoogle ScholarPubMed
20. Kusek, JW. Nosocomial pseudoepidemics and pseudoinfections: an increasing problem. Am J Infect Control 1981;9:7075.CrossRefGoogle Scholar
21. Hoffman, PC, Arnow, PM, Goldmann, DA, Parrott, PL, Stamm, WE, McGowan, JE Jr. False-positive blood cultures—association with nonsterile blood collection tubes. JAMA 1976;236:20732075.CrossRefGoogle ScholarPubMed
22. Laussucq, S, Schuster, D, Alexander, WJ, Thacker, WL, Wilkinson, HW, Spika, JS. False-positive DNA probe test for Legionella species associated with a cluster of respiratory illness. J Clin Microbiol 1988;26:14421444.CrossRefGoogle Scholar
23. Craven, DE, Lichtenberg, DA, Browne, KF, Coffey, DM, Treadwell, TL, McCabe, WR. Pseudobacteremia traced to cross-contamination by an automated blood culture analyzer. Infect Control 1984;5:7578.CrossRefGoogle ScholarPubMed
24. Tokars, JI, McNeil, MM, Tablan, OC, et al. Mycobacterium gordonae pseudoinfection associated with a contaminated antimicrobial solution. J Clin Microbiol 1990;28:27652769.CrossRefGoogle ScholarPubMed
25. Medcraft, JW, New, CW. False-positive Gram-stained smears of sterile body fluids due to contamination of laboratory deionized water. J Hosp Infect 1990;16:7580.CrossRefGoogle ScholarPubMed
26. Maloney, S, Welbel, S, Daves, B, et al. Mycobacterium abscessus pseudoinfection traced to an automated endoscope washer: utility of epidemiologic and laboratory investigation. J Infect Dis 1994;169:11661169.CrossRefGoogle Scholar
27. Berkelman, RL, Lewin, S, Allen, JR, et al. Pseudobacteremia attributed to contamination of povidone-iodine with Pseudomonas cepacia . Ann Intern Med 1981;95:3236.CrossRefGoogle ScholarPubMed
28. Tenover, FC, Arbett, RD, Goering, RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:22332239.CrossRefGoogle ScholarPubMed
29. Allen-Bridson, K, Dietrich, S, Olmsted, RN, et al. Dissimilarities in results of phage typing of Staphylococcus aureus when compared to pulsed-field gel electrophoresis. Am J Infect Control 1995;23:117. Abstract.Google Scholar
30. Prevost, G, Jaulhac, B, Piemont, Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol 1992;30:967973.CrossRefGoogle ScholarPubMed