Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T22:06:10.719Z Has data issue: false hasContentIssue false

Brave new world: Leveraging artificial intelligence for advancing healthcare epidemiology, infection prevention, and antimicrobial stewardship

Published online by Cambridge University Press:  03 July 2023

Alexandre R. Marra*
Affiliation:
Hospital Israelita Albert Einstein, São Paulo, Brazil Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
Priya Nori
Affiliation:
Division of Infectious Diseases, Department of Medicine, Montefiore Health System, Albert Einstein College of Medicine, Bronx, New York, United States
Bradley J. Langford
Affiliation:
Dalla Lana School of Public Health, University of Toronto, Toronto, Canada Hotel Dieu Shaver Health and Rehabilitation Centre, St. Catharines, Canada
Takaaki Kobayashi
Affiliation:
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
Gonzalo Bearman
Affiliation:
Division of Infectious Diseases, Virginia Commonwealth University Health, Virginia Commonwealth University, Richmond, Virginia, United States
*
Corresponding author: Alexandre R. Marra; Emails: alexandre-rodriguesmarra@uiowa.edu or alexandre.marra@einstein.br

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Commentary
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Topol, EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature medicine 2019;25:4456.CrossRefGoogle ScholarPubMed
Hutson, M. Robo-writers: the rise and risks of language-generating AI. Nature 2021;591:2225.CrossRefGoogle ScholarPubMed
Stokel-Walker, C. ChatGPT listed as author on research papers: many scientists disapprove. Nature 2023;613:620621.CrossRefGoogle ScholarPubMed
van Dis, EAM, Bollen, J, Zuidema, W, van Rooij, R, Bockting, CL. ChatGPT: five priorities for research. Nature 2023;614:224226.CrossRefGoogle ScholarPubMed
Everything you need to know about ChatGPT-4. Time magazine website. https://time.com/6263022/what-to-know-about-chatgpt-4/. Accessed March 15, 2023. Published 2023.Google Scholar
How ChatGPT kicked off an AI arms race. The New York Times website. https://www.nytimes.com/2023/02/03/technology/chatgpt-openai-artificial-intelligence.html. Accessed February 3, 2023, Published 2023.Google Scholar
Stokel-Walker, C, Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 2023;614:214216.CrossRefGoogle ScholarPubMed
Quan, HD, Khai, HD, Huynh, HT. Ordinary differential equation based neural network coupled with random forest in the quality assessment of hand hygiene processes. Appl Soft Comput 2022;130:109627.CrossRefGoogle Scholar
Fitzpatrick, F, Doherty, A, Lacey, G. Using artificial intelligence in infection prevention. Curr Treat Opt Infect Dis 2020;12:135144.CrossRefGoogle ScholarPubMed
Scardoni, A, Balzarini, F, Signorelli, C, Cabitza, F, Odone, A. Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J Infect Public Health 2020;13:10611077.CrossRefGoogle ScholarPubMed
Adlassnig, KP, Blacky, A, Koller, W. Artificial-intelligence-based hospital-acquired infection control. Stud Health Technol Informat 2009;149:103110.Google ScholarPubMed
Wu, G, Khair, S, Yang, F, et al. Performance of machine learning algorithms for surgical site infection case detection and prediction: a systematic review and meta-analysis. Ann Med Surg (2012) 2022;84:104956.Google ScholarPubMed
What is computer vision? IBM. https://www.ibm.com/topics/computer-vision. Accessed April 25, 2023. Published 2021.Google Scholar
Chadebecq, F, Vasconcelos, F, Mazomenos, E, Stoyanov, D. Computer vision in the surgical operating room. Visceral Med 2020;36:456462.CrossRefGoogle ScholarPubMed
Samareh, A, Chang, X, Lober, WB, et al. Artificial intelligence methods for surgical site infection: impacts on detection, monitoring, and decision making. Surg Infect 2019;20:546554.CrossRefGoogle ScholarPubMed
Bates, DW, Levine, D, Syrowatka, A, et al. The potential of artificial intelligence to improve patient safety: a scoping review. NPJ Digit Med 2021;4:54.CrossRefGoogle ScholarPubMed
Morgan, DJ, Wenzel, RP, Bearman, G. Contact precautions for endemic MRSA and VRE: time to retire legal mandates. JAMA 2017;318:329330.CrossRefGoogle ScholarPubMed
Morgan, DJ, Diekema, DJ, Sepkowitz, K, Perencevich, EN. Adverse outcomes associated with contact precautions: a review of the literature. Am J Infect Control 2009;37:8593.CrossRefGoogle ScholarPubMed
Chang, A, Chen, JH. BSAC Vanguard series: artificial intelligence and antibiotic stewardship. J Antimicrob Chemother 2022;77:12161217.CrossRefGoogle ScholarPubMed
Cavallaro, MC, Moran, E, Collyer, B, McCarthy, ND, Green, C, Keeling, MJ. Informing antimicrobial stewardship with explainable AI. PLOS Digit Health 2022.Google Scholar
Weis, C, Cuénod, A, Rieck, B, et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat Med 2022;28:164174.CrossRefGoogle ScholarPubMed
Quiles, M, Boettger, B, Pignatari, ACC. Update in bloodstream infection diagnosis using new methods in microbiology. Curr Treat Opt Infect Dis 2017;9:110.CrossRefGoogle Scholar
Rasooly, D, Khoury, MJ. Centers for Disease Control and Prevention, Atlanta, Georgia. Artificial Intelligence in Medicine and Public Health: Prospects and Challenges Beyond the Pandemic. 2022. https://blogs.cdc.gov/genomics/2022/03/01/artificial-intelligence-2/. Accessed February 5, 2023.Google Scholar
Wilson, AE, Lehmann, CU, Saleh, SN, Hanna, J, Medford, RJ. Social media: a new tool for outbreak surveillance. Antimicrob Steward Healthc Epidemiol 2021;1:e50.CrossRefGoogle ScholarPubMed
How AI can actually be helpful in disaster response. MIT Technology Review website. https://www.technologyreview.com/2023/02/20/1068824/ai-actually-helpful-disaster-response-turkey-syria-earthquake/. Published 2023. Accessed March 21, 2023.Google Scholar
Lu, S, Christie, GA, Nguyen, TT, Freeman, JD, Hsu, EB. Applications of artificial intelligence and machine learning in disasters and public health emergencies. Disaster Med Public Health Preparedness 2022;16:16741681.CrossRefGoogle ScholarPubMed
Henning, KJ. Overview of syndromic surveillance: what is syndromic surveillance? Morbid Mortal Wkly Rep 2004;53.Google Scholar
Isaacson, W. The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race. New York: Simon & Schuster; 2021.Google Scholar
Manyika, J, Silberg, J, Presten, B. What do we do about the biases in AI? Harvard Business Review. https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai. Published 2019. Accessed April 24, 2023.Google Scholar
Marr, B. The problem with biased AIs (and how to make AI better). Forbes website. https://www.forbes.com/sites/bernardmarr/2022/09/30/the-problem-with-biased-ais-and-how-to-make-ai-better/?sh=7f1a5c447700. Published 2022. Accessed April 23, 2023.Google Scholar
Seibert, K, Domhoff, D, Bruch, D, et al. Application scenarios for artificial intelligence in nursing care: rapid review. J Med Internet Res 2021;23:e26522.CrossRefGoogle ScholarPubMed
Henning, KJ. Overview of syndromic surveillance: what is syndromic surveillance? Morbid Mortal Wkly Rep 2004;53:511.Google Scholar