Surgical-site infections (SSIs), defined as infections affecting the incision site or the deep tissue of the operative site,
Reference Horan, Gaynes, Martone, Jarvis and Emori1
occur in 0.5%–3% of patients undergoing inpatient surgery.
Reference Berríos-Torres, Umscheid and Bratzler2–Reference Seidelman, Baker and Lewis4
Overall, 21,186 SSIs were reported to the Center for Disease Control and Prevention’s National Healthcare Safety Network in 2021.
3
SSIs contribute to increased length of stay; each SSI associated with up to 11 additional hospital days
Reference Zimlichman, Henderson and Tamir5
SSIs also contribute to increased mortality, with a 2- to 11-fold increase in risk of death among surgical patients with an SSI compared to those without an SSI.
Reference Engemann, Carmeli and Cosgrove6,Reference Kirkland, Briggs, Trivette, Wilkinson and Sexton7
Additionally, SSIs are estimated to contribute $3.5–10 billion annually in healthcare costs.
Reference Scott8
Risk factors for SSI can be divided into intrinsic patient-related factors and procedure-related factors.
Reference Calderwood, Anderson and Bratzler9
Up to 60% of SSIs are estimated to be preventable using evidence-based guidelines.
Reference Meeks, Lally and Carrick10,Reference Umscheid, Mitchell, Doshi, Agarwal, Williams and Brennan11
Surgical approach may also affect the risk of SSI, and minimally invasive surgery (MIS) potentially decreases risk. The MIS technique entails the use of laparoscopic and/or robotic techniques to perform surgical procedures while avoiding the morbidity of conventional open surgical wounds.
Reference Jaffray12
MIS is thought to reduce the risk of SSI due to smaller incisions, less retraction of the surgical site, and less local soft-tissue trauma.
Reference Gandaglia, Ghani and Sood13
We undertook a literature review to describe the risk of SSI in MIS compared to open surgery because a comprehensive review has not been published.
Methods
We searched the Medline database on June 9, 2023, for studies published in English and completed in the last 20 years that reported the incidence of SSI in patients undergoing MIS compared to open surgery. Search terms used included “minimally invasive surgery,” “laparoscopic surgery,” “robotic surgery,” “endoscopic surgery,” and “surgical site infection.” Studies were excluded if they lacked a control group of patients undergoing open surgery or if they were published prior to June 9, 2003.
Results
Our findings are summarized in Table 1. In total, 25 studies were identified, including randomized controlled trials, prospective cohort studies, and retrospective analyses of pre-existing clinical databases.
Reference Gandaglia, Ghani and Sood13–Reference Kaafarani, Kaufman, Reda and Itani37
A wide range of patient populations were studied, including infants, adults, and age-mixed populations. Orthopedic, abdominal, pelvic, and spinal surgeries were included, as were both elective and emergent procedures. Most studies compared laparoscopic surgeries to open surgeries; however, 4 included robotic approaches in their analyses.
Reference Tollefson, Frank and Gettman14,Reference McCracken, Mureebe and Blazer24,Reference Colling, Glover, Statz, Geller and Beilman28,Reference Wang, Chen and Wang34
Moreover, 21 studies (84%) showed statistically significant decreases in the rate of SSI among patients undergoing MIS compared with open procedures. In addition, MIS was associated with decreased length of hospital stay in multiple studies. One study found decreased 30-day mortality among patients undergoing MIS for emergent indications as opposed to those who underwent open surgery.
Reference Arnold, Elhage and Schiffern21
Another study showed decreased hospital readmission rates among patients with septic arthritis undergoing arthroscopy compared to open arthrotomy.
Reference Ramamurti, Agarwal and Gu18
Table 1. Summary of Studies Assessing Impact of Minimally Invasive Surgery on Frequency of Surgical-Site Infections
Discussion
In this literature review, we found that MIS is associated with decreased rates of SSI across many different surgical procedures and among a wide variety of patient populations. SSIs are serious healthcare-associated infections with a high burden of morbidity and mortality, as well as a substantial financial cost.
Reference Calderwood, Anderson and Bratzler9
Numerous patient and procedural risk factors have been associated with increased risk of SSI among patients undergoing surgery, with the SHEA SSI Prevention Guideline recommending corresponding antimicrobial and procedural interventions to reduce these risks.
Reference Calderwood, Anderson and Bratzler9
This guideline noted that MIS procedures may be associated with a lower risk of infection but called for additional data to guide further recommendations.
MIS procedures are distinguished from open procedures by method of access, method of exposure, and extent of operative trauma.
Reference Varela, Wilson and Nguyen16
Patients undergoing MIS procedures are thought to have a decreased risk for SSI compared to those undergoing open procedures due to smaller surgical incisions, decreased tissue trauma and contamination, and elimination of surgical retraction.
Reference Varela, Wilson and Nguyen16
Furthermore, SSIs occurring after MIS may be less severe given a smaller surgical site leading to a smaller affected anatomic area. Compared to those undergoing open surgeries, patients undergoing MIS experience less local tissue trauma, less systemic stress, decreased impairment of immediate postoperative pulmonary function, and improved immunologic response, all of which contribute to improved outcomes.
Reference Nguyen, Lee and Goldman38–Reference Whelan, Franklin and Holubar42
However, the benefits of MIS may be overstated given several potential sources of bias. First, sicker patients or those undergoing more complex surgical procedures may be more likely to undergo open surgery instead of MIS
Reference Zhao and Gu43
; therefore, there may be a selection bias for patients who are healthier at baseline and those with less complex surgical needs to be more likely to undergo MIS compared to open surgery. Randomized controlled trials (RCTs) minimize the impact of confounding factors; however, in this literature review, we only identified 4 RCTs, with mixed results and relatively small sample sizes. Additional well-designed RCTs are warranted for further investigation into the relationship between surgical approach and risk of SSI. Notably, many of the studies identified were retrospective, and therefore prone to selection and recall bias. Second, because performing MIS requires additional, specialized training on the part of surgeons, improved outcomes in MIS may be partly due to improved technical expertise and experience among surgeons performing MIS compared to those performing open surgical procedures. Finally, MIS procedures may be more likely to occur at more highly resourced referral centers, which may have more SSI prevention interventions in place than smaller, community centers.
In conclusion, MIS has many advantages over open surgery, including decreased risk of SSIs in addition to improved cosmesis, decreased pain, and shorter hospital length of stay.
Reference Zhao and Gu43
As a result, MIS may contribute to decreased morbidity, mortality, and costs compared to open surgery. However, the projected benefits may be due in part to a bias for healthier or less surgically complex patients to be more likely to be selected for MIS instead of open surgery. MIS may not be appropriate for all patients or all procedures, but should be considered, when feasible, to reduce the risk of SSI.
Surgical-site infections (SSIs), defined as infections affecting the incision site or the deep tissue of the operative site, Reference Horan, Gaynes, Martone, Jarvis and Emori1 occur in 0.5%–3% of patients undergoing inpatient surgery. Reference Berríos-Torres, Umscheid and Bratzler2–Reference Seidelman, Baker and Lewis4 Overall, 21,186 SSIs were reported to the Center for Disease Control and Prevention’s National Healthcare Safety Network in 2021. 3 SSIs contribute to increased length of stay; each SSI associated with up to 11 additional hospital days Reference Zimlichman, Henderson and Tamir5 SSIs also contribute to increased mortality, with a 2- to 11-fold increase in risk of death among surgical patients with an SSI compared to those without an SSI. Reference Engemann, Carmeli and Cosgrove6,Reference Kirkland, Briggs, Trivette, Wilkinson and Sexton7 Additionally, SSIs are estimated to contribute $3.5–10 billion annually in healthcare costs. Reference Scott8
Risk factors for SSI can be divided into intrinsic patient-related factors and procedure-related factors. Reference Calderwood, Anderson and Bratzler9 Up to 60% of SSIs are estimated to be preventable using evidence-based guidelines. Reference Meeks, Lally and Carrick10,Reference Umscheid, Mitchell, Doshi, Agarwal, Williams and Brennan11 Surgical approach may also affect the risk of SSI, and minimally invasive surgery (MIS) potentially decreases risk. The MIS technique entails the use of laparoscopic and/or robotic techniques to perform surgical procedures while avoiding the morbidity of conventional open surgical wounds. Reference Jaffray12 MIS is thought to reduce the risk of SSI due to smaller incisions, less retraction of the surgical site, and less local soft-tissue trauma. Reference Gandaglia, Ghani and Sood13 We undertook a literature review to describe the risk of SSI in MIS compared to open surgery because a comprehensive review has not been published.
Methods
We searched the Medline database on June 9, 2023, for studies published in English and completed in the last 20 years that reported the incidence of SSI in patients undergoing MIS compared to open surgery. Search terms used included “minimally invasive surgery,” “laparoscopic surgery,” “robotic surgery,” “endoscopic surgery,” and “surgical site infection.” Studies were excluded if they lacked a control group of patients undergoing open surgery or if they were published prior to June 9, 2003.
Results
Our findings are summarized in Table 1. In total, 25 studies were identified, including randomized controlled trials, prospective cohort studies, and retrospective analyses of pre-existing clinical databases. Reference Gandaglia, Ghani and Sood13–Reference Kaafarani, Kaufman, Reda and Itani37 A wide range of patient populations were studied, including infants, adults, and age-mixed populations. Orthopedic, abdominal, pelvic, and spinal surgeries were included, as were both elective and emergent procedures. Most studies compared laparoscopic surgeries to open surgeries; however, 4 included robotic approaches in their analyses. Reference Tollefson, Frank and Gettman14,Reference McCracken, Mureebe and Blazer24,Reference Colling, Glover, Statz, Geller and Beilman28,Reference Wang, Chen and Wang34 Moreover, 21 studies (84%) showed statistically significant decreases in the rate of SSI among patients undergoing MIS compared with open procedures. In addition, MIS was associated with decreased length of hospital stay in multiple studies. One study found decreased 30-day mortality among patients undergoing MIS for emergent indications as opposed to those who underwent open surgery. Reference Arnold, Elhage and Schiffern21 Another study showed decreased hospital readmission rates among patients with septic arthritis undergoing arthroscopy compared to open arthrotomy. Reference Ramamurti, Agarwal and Gu18
Table 1. Summary of Studies Assessing Impact of Minimally Invasive Surgery on Frequency of Surgical-Site Infections
Note. OR, odds ratio; SSI, surgical site infections; MIS, minimally invasive surgery; LOS, length of stay; AS, arthroscopic surgery; LS, laparoscopic surgery; RS, robotic surgery; NS, not specified.
Discussion
In this literature review, we found that MIS is associated with decreased rates of SSI across many different surgical procedures and among a wide variety of patient populations. SSIs are serious healthcare-associated infections with a high burden of morbidity and mortality, as well as a substantial financial cost. Reference Calderwood, Anderson and Bratzler9 Numerous patient and procedural risk factors have been associated with increased risk of SSI among patients undergoing surgery, with the SHEA SSI Prevention Guideline recommending corresponding antimicrobial and procedural interventions to reduce these risks. Reference Calderwood, Anderson and Bratzler9 This guideline noted that MIS procedures may be associated with a lower risk of infection but called for additional data to guide further recommendations.
MIS procedures are distinguished from open procedures by method of access, method of exposure, and extent of operative trauma. Reference Varela, Wilson and Nguyen16 Patients undergoing MIS procedures are thought to have a decreased risk for SSI compared to those undergoing open procedures due to smaller surgical incisions, decreased tissue trauma and contamination, and elimination of surgical retraction. Reference Varela, Wilson and Nguyen16 Furthermore, SSIs occurring after MIS may be less severe given a smaller surgical site leading to a smaller affected anatomic area. Compared to those undergoing open surgeries, patients undergoing MIS experience less local tissue trauma, less systemic stress, decreased impairment of immediate postoperative pulmonary function, and improved immunologic response, all of which contribute to improved outcomes. Reference Nguyen, Lee and Goldman38–Reference Whelan, Franklin and Holubar42
However, the benefits of MIS may be overstated given several potential sources of bias. First, sicker patients or those undergoing more complex surgical procedures may be more likely to undergo open surgery instead of MIS Reference Zhao and Gu43 ; therefore, there may be a selection bias for patients who are healthier at baseline and those with less complex surgical needs to be more likely to undergo MIS compared to open surgery. Randomized controlled trials (RCTs) minimize the impact of confounding factors; however, in this literature review, we only identified 4 RCTs, with mixed results and relatively small sample sizes. Additional well-designed RCTs are warranted for further investigation into the relationship between surgical approach and risk of SSI. Notably, many of the studies identified were retrospective, and therefore prone to selection and recall bias. Second, because performing MIS requires additional, specialized training on the part of surgeons, improved outcomes in MIS may be partly due to improved technical expertise and experience among surgeons performing MIS compared to those performing open surgical procedures. Finally, MIS procedures may be more likely to occur at more highly resourced referral centers, which may have more SSI prevention interventions in place than smaller, community centers.
In conclusion, MIS has many advantages over open surgery, including decreased risk of SSIs in addition to improved cosmesis, decreased pain, and shorter hospital length of stay. Reference Zhao and Gu43 As a result, MIS may contribute to decreased morbidity, mortality, and costs compared to open surgery. However, the projected benefits may be due in part to a bias for healthier or less surgically complex patients to be more likely to be selected for MIS instead of open surgery. MIS may not be appropriate for all patients or all procedures, but should be considered, when feasible, to reduce the risk of SSI.
Acknowledgments
Financial support
No financial support was provided relevant to this article.
Competing interests
All authors report no conflicts of interest relevant to this article.