Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T11:32:53.410Z Has data issue: false hasContentIssue false

Quantifying Hospital-Acquired Carriage of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Among Patients in Dutch Hospitals

Published online by Cambridge University Press:  07 December 2017

Marjolein F. Q. Kluytmans-van den Bergh*
Affiliation:
Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, the Netherlands Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, the Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
Suzan P. van Mens
Affiliation:
Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
Manon R. Haverkate
Affiliation:
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
Martin C. J. Bootsma
Affiliation:
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, the Netherlands
Jan A. J. W. Kluytmans
Affiliation:
Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, the Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
Marc J. M. Bonten
Affiliation:
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
*
Address correspondence to Marjolein Kluytmans-van den Bergh, Amphia Academy Infectious Disease Foundation, Amphia Hospital, PO Box 90158, 4800 RK Breda, the Netherlands (marjoleinkluytmans@gmail.com.)

Abstract

BACKGROUND

Extended-spectrum β-lactamase–producing Enterobacteriaceae (ESBL-E) are emerging worldwide. Contact precautions are recommended for known ESBL-E carriers to control the spread of ESBL-E within hospitals.

OBJECTIVE

This study quantified the acquisition of ESBL-E rectal carriage among patients in Dutch hospitals, given the application of contact precautions.

METHODS

Data were used from 2 cluster-randomized studies on isolation strategies for ESBL-E: (1) the SoM study, performed in 14 Dutch hospitals from 2011 through 2014 and (2) the R-GNOSIS study, for which data were limited to those collected in a Dutch hospital in 2014. Perianal cultures were obtained, either during ward-based prevalence surveys (SoM), or at admission and twice weekly thereafter (R-GNOSIS). In both studies, contact precautions were applied to all known ESBL-E carriers. Estimates for acquisition of ESBL-E were based on the results of admission and discharge cultures from patients hospitalized for more than 2 days (both studies) and a Markov chain Monte Carlo (MCMC) model, applied to all patients hospitalized (R-GNOSIS).

RESULTS

The absolute risk of acquisition of ESBL-E rectal carriage ranged from 2.4% to 2.9% with an ESBL-E acquisition rate of 2.8 to 3.8 acquisitions per 1,000 patient days. In addition, 28% of acquisitions were attributable to patient-dependent transmission, and the per-admission reproduction number was 0.06.

CONCLUSIONS

The low ESBL-E acquisition rate in this study demonstrates that it is possible to control the nosocomial transmission of ESBL in a low-endemic, non-ICU setting where Escherichia coli is the most prevalent ESBL-E and standard and contact precautions are applied for known ESBL-E carriers.

TRIAL REGISTRATION

Nederlands Trialregister, NTR2799, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2799; ISRCTN Registry, ISRCTN57648070, http://www.isrctn.com/ISRCTN57648070

Infect Control Hosp Epidemiol 2018;39:32–39

Type
Original Articles
Copyright
© 2017 by The Society for Healthcare Epidemiology of America. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present affiliation: Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, the Netherlands.

a

Authors of equal contribution.

b

SoM study group: Marc Bonten, University Medical Center Utrecht, Utrecht, the Netherlands; Martin Bootsma, University Medical Center Utrecht, Utrecht, the Netherlands; Els de Brauwer, Atrium Medical Center, Heerlen, the Netherlands; Patricia Bruijning-Verhagen, University Medical Center Utrecht, Utrecht, the Netherlands; Anton Buiting, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands; Bram Diederen, Red Cross Hospital, Beverwijk, the Netherlands; Erika van Elzakker, Haga Hospital, Den Haag, the Netherlands; Alexander Friedrich, University Medical Center Groningen, Groningen, the Netherlands; Joost Hopman, University Medical Center St Radboud, Nijmegen, the Netherlands; Greetje Kampinga, University Medical Center Groningen, Groningen, the Netherlands; Peter van Keulen, Amphia Hospital, Breda, the Netherlands; Jan Kluytmans, Amphia Hospital, Breda, the Netherlands, and University Medical Center Utrecht, Utrecht, the Netherlands; Marjolein Kluytmans-van den Bergh, University Medical Center Utrecht, Utrecht, the Netherlands, and Amphia Hospital, Breda, the Netherlands; Nashwan al Naiemi, Ziekenhuisgroep Twente, Almelo/Hengelo, the Netherlands; Guy Oudhuis, Maastricht University Medical Center, Maastricht, the Netherlands; Erwin Raangs, University Medical Center Groningen, Groningen, the Netherlands; Sigrid Rosema, University Medical Center Groningen, Groningen, the Netherlands; John Rossen, University Medical Center Groningen, Groningen, the Netherlands; Gijs Ruijs, Isala Clinics, Zwolle, the Netherlands; Paul Savelkoul, Maastricht University Medical Center+, Maastricht, the Netherlands; Annet Troelstra, University Medical Center Utrecht, Utrecht, the Netherlands; Christina Vandenbroucke-Grauls, VU University Medical Center, Amsterdam, the Netherlands; Kees Verduin, Amphia Hospital, Breda, the Netherlands; Carlo Verhulst, Amphia Hospital, Breda, the Netherlands; Margreet Vos, Erasmus Medical Center, Rotterdam, the Netherlands; Andreas Voss, University Medical Center St Radboud, Nijmegen, the Netherlands; Rob Willems, University Medical Center Utrecht, Utrecht, the Netherlands; Ina Willemsen, Amphia Hospital, Breda, the Netherlands.

c

R-GNOSIS study group: Hetty Blok, University Medical Center Utrecht, Utrecht, the Netherlands; Marc Bonten, University Medical Center Utrecht, Utrecht, the Netherlands; Martin Bootsma, University Medical Center Utrecht, Utrecht, the Netherlands; Rafael Canton, Hospital Universitario Ramón y Cajal, Madrid, Spain; Patricia Ruiz Carbajosa, Hospital Universitario Ramón y Cajal, Madrid, Spain; Petra Gastmeier, Charité-University Medicine Berlin, Berlin, Germany; Sonja Hansen, Charité-University Medicine Berlin, Berlin, Germany; Stephan Harbarth, University of Geneva, Geneva, Switzerland; Fieke Kloosterman, University Medical Center Utrecht, Utrecht, the Netherlands; Friederike Maechler, Charité-University Medicine Berlin, Berlin, Germany; Joost Schotsman, University Medical Center Utrecht, Utrecht, the Netherlands.

PREVIOUS PRESENTATION: Preliminary results from this study were presented at ECCMID 2016 on April 11, 2016, Amsterdam, the Netherlands.

References

REFERENCES

1. Paterson, DL, Bonomo, RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657686.Google Scholar
2. Hawkey, PM, Jones, AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009;64:i3i10.Google Scholar
3. Woerther, PL, Burdet, C, Chachaty, E, Andremont, A. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 2013;26:744758.Google Scholar
4. Antimicrobial resistance surveillance in Europe. 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control website. http://ecdc.europa.eu/en/publications/_layouts/forms/Publication_DispForm.aspx?List=4f55ad51-4aed-4d32-b960-af70113dbb90&ID=1400. Published 2015. Accessed August 15, 2017.Google Scholar
5. NethMap. 2015. Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands in 2014. Dutch Foundation of the Working Party on Antibiotic Policy website. http://www.swab.nl/swab/cms3.nsf/uploads/4F5A0D8E6F0DD139C1257E6E0051833A/$FILE/NethmapMaran2015%20_webversie.pdf. Published 2015. Accessed August 15, 2017.Google Scholar
6. Ammerlaan, HSM, Troelstra, A, Kruitwagen, CLJJ, Kluytmans, JAJW, Bonten, MJM. Quantifying changes in incidences of nosocomial bacteraemia caused by antibiotic-susceptible and antibiotic-resistant pathogens. J Antimicrob Chemother 2009;63:10641070.CrossRefGoogle ScholarPubMed
7. Rottier, WC, Ammerlaan, HSM, Bonten, MJM. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 2012;67:13111320.Google Scholar
8. Stewardson, A, Fankhauser, C, De Angelis, G, et al. Burden of bloodstream infection caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae determined using multistate modeling at a Swiss university hospital and a nationwide predictive model. Infect Control Hosp Epidemiol 2013;34:133143.CrossRefGoogle Scholar
9. Esposito, S, Capuano, A, Noviello, S, et al. Modification of patients’ endogenous bacterial flora during hospitalization in a large teaching hospital in Naples. J Chemother 2003;6:568573.Google Scholar
10. Ben-Ami, R, Schwaber, MJ, Navon-Venezia, S, et al. Influx of extended-spectrum beta-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis 2006;42:925934.CrossRefGoogle ScholarPubMed
11. Ruppé, E, Pitsch, A, Tubach, F, et al. Clinical predictive values of extended-spectrum beta-lactamase carriage in patients admitted to medical wards. Eur J Clin Microbiol Infect Dis 2012;31:319325.CrossRefGoogle ScholarPubMed
12. Schoevaerdts, D, Verroken, A, Huang, TD, et al. Multidrug-resistant bacteria colonization amongst patients newly admitted to a geriatric unit: a prospective cohort study. J Infect 2012;65:109118.CrossRefGoogle ScholarPubMed
13. Pasricha, J, Koessler, T, Harbarth, S, et al. Carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae among internal medicine patients in Switzerland. Antimicrob Resist Infect Control 2013;2:20.Google Scholar
14. Shitrit, P, Reisfeld, S, Paitan, Y, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae carriage upon hospital admission: prevalence and risk factors. J Hosp Infect 2013;85:230232.Google Scholar
15. Platteel, TN, Leverstein-van Hall, MA, Cohen Stuart, JW, et al. Predicting carriage with extended-spectrum beta-lactamase-producing bacteria at hospital admission: a cross-sectional study. Clin Microbiol Infect 2015;21:141146.Google Scholar
16. Willemsen, I, Oome, S, Verhulst, C, Pettersson, A, Verduin, K, Kluytmans, J. Trends in extended spectrum beta-lactamase (ESBL) producing Enterobacteriaceae and ESBL genes in a Dutch teaching hospital, measured in 5 yearly point prevalence surveys (2010–2014). PLoS ONE 2015;10:e0141765.Google Scholar
17. Huizinga, P, Kluytmans-van den Bergh, M, Rijen, M, Willemsen, I, van ‘t Veer, N, Kluytmans, J. Proton pump inhibitor use is associated with extended-spectrum beta-lactamase-producing Enterobacteriaceae rectal carriage at hospital admission: a cross-sectional study. Clin Infect Dis 2017;64:361363.Google Scholar
18. Kluytmans-VandenBergh, MFQ, Kluytmans, JAJW, Voss, A. Dutch guideline for preventing nosocomial transmission of highly resistant microorganisms (HRMO). Infection 2005;33:309313.Google Scholar
19. Tacconelli, E, Cataldo, MA, Dancer, SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 2014;20:S1S55.Google Scholar
20. Kluytmans, JAJW. Single- or multiple-occupancy room isolation of patients colonised with ESBL-producing Enterobacteriaceae. Trial ID NTR2799. Nederlands Trialregister website. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2799. Published 2011. Accessed August 15, 2017.Google Scholar
21. Gastmeier, P. Patient isolation strategies for extended spectrum beta lactamase (ESBL) carriers in medical and surgical hospital wards. ISRCTN57648070. ISRCTN Registry website. http://www.isrctn.com/ISRCTN57648070. Published 2014. Accessed August 15, 2017.Google Scholar
22. Kluytmans-van den Bergh, MFQ, Verhulst, C, Willemsen, LE, Verkade, E, MJM, Bonten, Kluytmans, JAJW. Rectal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in hospitalized patients: selective preenrichment increases yield of screening. J Clin Microbiol 2015;53:27092712.Google Scholar
23. NVMM guideline laboratory detection of highly resistant microorganisms, version 2.0. Netherlands Society for Medical Microbiology website. http://www.nvmm.nl/richtlijnen/hrmo-laboratory-detection-highly-resistant-microorganisms. Published 2012. Accessed August 15, 2017.Google Scholar
24. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, version 1.0. European Committee on Antimicrobial Susceptibility Testing website. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf. Published 2012. Accessed August 15, 2017.Google Scholar
25. Dutch Working Party on Infection Prevention. Richtlijn Handhygiëne. Rijksinstituut voor Volksgezondheid en Milieu website. http://www.rivm.nl/dsresource?objectid=3f4dd7ba-f3c4-48ea-9fed-8876b2ca5845&type=org&disposition=inline. Published 2014. Accessed August 15, 2017.Google Scholar
26. Dutch Working Party on Infection Prevention. WIP-richtlijn Persoonlijke beschermingsmiddelen. Rijksinstituut voor Volksgezondheid en Milieu website. http://www.rivm.nl/dsresource?objectid=5426e1c5-5355-4d03-98ef-e51e9e27e9dd&type=org&disposition=inline. Published 2015. Accessed August 15, 2017.Google Scholar
27. Dutch Working Party on Infection Prevention. WIP-richtlijn Persoonlijke hygiëne medewerker. Rijksinstituut voor Volksgezondheid en Milieu website. http://www.rivm.nl/dsresource?objectid=dfa15c98-834b-4d5c-a392-1278ad81345c&type=org&disposition=inline. Published 2014. Accessed August 15, 2017.Google Scholar
28. Dutch Working Party on Infection Prevention. WIP-richtlijn Contactisolatie. Rijksinstituut voor Volksgezondheid en Milieu website. http://www.rivm.nl/dsresource?objectid=3ce6b915-2169-4bbf-be05-7b7fc0dc527d&type=org&disposition=inline. Published 2014. Accessed August 15, 2017.Google Scholar
29. National Healthcare Safety Network (NHSN) patient safety component manual. National Health Safety Network website. https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf. Published 2017. Accessed August 15, 2017.Google Scholar
30. Higgins, JPT. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 2008;37:11581160.Google Scholar
31. Worby, CJ, Jeyaratnam, D, Robotham, JV, et al. Estimating the effectiveness of isolation and decolonization measures in reducing transmission of methicillin-resistant Staphylococcus aureus in hospital general wards. Am J Epidemiol 2013;177:13061313.Google Scholar
32. Haverkate, MR, Bootsma, MCJ, Weiner, S, et al. Modeling spread of KPC-producing bacteria in long-term acute care hospitals in the Chicago region, USA. Infect Control Hosp Epidemiol 2015;36:11481154.CrossRefGoogle ScholarPubMed
33. Bonten, MJM, Slaughter, S, Ambergen, AW, et al. The role of “colonization pressure” in the spread of vancomycin-resistant enterococci. Arch Intern Med 1998;158:11271132.Google Scholar
34. Cooper, BS, Kypraios, T, Batra, R, Wyncoll, D, Tosas, O, Edgeworth, JD. Quantifying type-specific reproduction numbers for nosocomial pathogens: evidence for heightened transmission of an Asian sequence type 239 MRSA clone. PLoS Comput Biol 2004;8:e1002454.CrossRefGoogle Scholar
35. Hilty, M, Betsch, BY, Bögli-Stuber, K, et al. Transmission dynamics of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis 2012;55:967975.CrossRefGoogle ScholarPubMed
36. Tschudin-Sutter, S, Frei, R, Dangel, M, Stranden, A, Widmer, AF. Rate of transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae without contact isolation. Clin Infect Dis 2012;55:15051511.Google Scholar
37. Tschudin-Sutter, S, Frei, R, Schwahn, F, et al. Prospective validation of cessation of contact precautions for extended-spectrum beta-lactamase-producing Escherichia coli . Emerg Infect Dis 2016;22:10941097.Google Scholar
38. Haverkate, MR, Platteel, TN, Fluit, AC, et al. Quantifying within-household transmission of extended-spectrum beta-lactamase-producing bacteria. Clin Microbiol Infect 2017;23:46.e146.e7.Google Scholar
Supplementary material: File

Kluytmans-van den Bergh et al supplementary material

Appendix A

Download Kluytmans-van den Bergh et al supplementary material(File)
File 110.2 KB
Supplementary material: File

Kluytmans-van den Bergh et al supplementary material

Appendix B

Download Kluytmans-van den Bergh et al supplementary material(File)
File 23.1 KB
Supplementary material: PDF

Kluytmans-van den Bergh et al supplementary material

Appendix C

Download Kluytmans-van den Bergh et al supplementary material(PDF)
PDF 65.1 KB