Hostname: page-component-6bf8c574d5-86b6f Total loading time: 0 Render date: 2025-03-03T19:34:52.008Z Has data issue: false hasContentIssue false

Real-word utility of procalcitonin in patients hospitalized with community-acquired pneumonia: A matched cohort study

Published online by Cambridge University Press:  28 February 2025

Dan Ilges*
Affiliation:
Department of Pharmacy Services, Mayo Clinic Arizona, Phoenix, AZ, USA
Dylan Kosaski
Affiliation:
Department of Pharmacy Services, Mayo Clinic, Rochester, MN, USA
Maria Teresa Seville
Affiliation:
Division of Infectious Diseases, Mayo Clinic Arizona, Phoenix, AZ, USA
Alyssa K. McGary
Affiliation:
Division of Clinical Trials and Biostatistics, Mayo Clinic Arizona, Phoenix, AZ, USA
John C. O’Horo
Affiliation:
Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, MN, USA
Christine L. Snozek
Affiliation:
Division of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
Ryan W. Stevens
Affiliation:
Department of Pharmacy Services, Mayo Clinic, Rochester, MN, USA
Aditya Shah
Affiliation:
Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
*
Corresponding author: Dan Ilges; Email: Ilges.daniel@mayo.edu

Abstract

Objective:

To retrospectively observe procalcitonin (PCT) and antibiotic ordering practices in patients hospitalized with community-acquired pneumonia (CAP).

Design:

Retrospective, exact matched, multicenter cohort study from October 1, 2018 – March 31, 2023.

Setting:

All hospitals across the Mayo Clinic Enterprise.

Participants:

Adult patients with CAP, identified using pneumonia diagnosis codes and receipt of systemic antibiotics with an indication of “respiratory tract infection” within 48 hours of hospitalization.

Methods:

PCT testing within the first 7 days of hospitalization was compared to non-PCT care (nPCT). The primary outcomes were treatment duration, antibiotic days of therapy (DOT), and length of stay (LOS).

Results:

15364 patients met inclusion criteria. PCT testing occurred in 42.4% (6515/15364) of encounters, totaling 8214 PCT results. 12880 unique patient encounters were matched 1:1, 6440 in each group. Treatment duration was longer in the PCT group compared to the nPCT group (5.1 vs 4.6 days, respectively, P < 0.001). Patients in the PCT group also received more DOT (8.6 vs 7.6 DOT, P < 0.001) and had a longer LOS (6.8 vs 5.9 days, P < 0.001), respectively. There was no difference in 30-day all-cause mortality or C. difficile infection between groups. In a sensitivity analysis of nPCT patients compared to those with a peak value <0.25 ng/mL (i.e. normal result) there was no difference in treatment duration (4.6 days nPCT vs 4.7 days normal PCT, P = 0.104) or LOS (5.9 days nPCT vs 6.0 days normal PCT, P = 0.134).

Conclusion:

PCT testing in patients hospitalized with CAP was not associated with reduced antimicrobial utilization, LOS, or 30-day all-cause mortality.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Metlay, JP, Waterer, GW, Long, AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and infectious diseases society of America. Am J Respir Crit Care Med 2019;200:e45e67. doi: 10.1164/rccm.201908-1581ST CrossRefGoogle ScholarPubMed
Musher, DM, Thorner, AR. Community-acquired pneumonia. N Engl J Med 2014;371:16191628. doi: 10.1056/NEJMra1312885 CrossRefGoogle ScholarPubMed
Chambliss, AB, Patel, K, Colon-Franco, JM, et al. AACC guidance document on the clinical use of procalcitonin. J Appl Lab Med 2023;8:598634. doi: 10.1093/jalm/jfad007 CrossRefGoogle ScholarPubMed
Schuetz, P, Christ-Crain, M, Thomann, R, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009;302:10591066. doi: 10.1001/jama.2009.1297 CrossRefGoogle ScholarPubMed
Montassier, E, Javaudin, F, Moustafa, F, et al. Guideline-based clinical assessment versus procalcitonin-guided antibiotic use in pneumonia: a pragmatic randomized trial. Ann Emerg Med 2019;74:580591. doi: 10.1016/j.annemergmed.2019.02.025 CrossRefGoogle ScholarPubMed
Huang, DT, Yealy, DM, Filbin, MR, et al. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med 2018;379:236249. doi: 10.1056/NEJMoa1802670 CrossRefGoogle ScholarPubMed
Albrich, WC, Dusemund, F, Bucher, B, et al. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012;172:715722. doi: 10.1001/archinternmed.2012.770 Google ScholarPubMed
Heren, JE, Lund, BC, Alexander, B, Livorsi, DJ. Procalcitonin monitoring and antibiotic duration in presumed lower respiratory tract infections: a propensity score-matched cohort across the veterans health administration. Open Forum Infect Dis 2023;10:ofad520. doi: 10.1093/ofid/ofad520 CrossRefGoogle ScholarPubMed
Beardsley, J, Vestal, M, Rosario, N, et al. Accuracy of and prescriber perceptions related to documenting antibiotic indications during order entry at an academic medical center. Am J Health Syst Pharm 2020;77:282287. doi: 10.1093/ajhp/zxz318 CrossRefGoogle Scholar
Wang, N, Neuner, EA, Pallotta, AM, et al. Validation and evaluation of antimicrobial orders indication for use. Infect Control Hosp Epidemiol 2018;39:243245. doi: 10.1017/ice.2017.281 CrossRefGoogle ScholarPubMed
Heil, EL, Pineles, L, Mathur, P, et al. Accuracy of provider-selected indications for antibiotic orders. Infect Control Hosp Epidemiol 2018;39:111113. doi: 10.1017/ice.2017.277 CrossRefGoogle ScholarPubMed
Hu, R, Han, C, Pei, S, Yin, M, Chen, X. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents 2020;56:106051. doi: 10.1016/j.ijantimicag.2020.106051 CrossRefGoogle ScholarPubMed
Relph, KA, Russell, CD, Fairfield, CJ, et al. Procalcitonin is not a reliable biomarker of bacterial coinfection in people with coronavirus disease 2019 undergoing microbiological investigation at the time of hospital admission. Open Forum Infect Dis 2022;9:ofac179. doi: 10.1093/ofid/ofac179 CrossRefGoogle Scholar
Singh, B, Singh, A, Ahmed, A, et al. Derivation and validation of automated electronic search strategies to extract Charlson comorbidities from electronic medical records. Mayo Clin Proc 2012;87:817824. doi: 10.1016/j.mayocp.2012.04.015 CrossRefGoogle ScholarPubMed
Ilges, D, Tande, AJ, Stevens, RW. A broad spectrum of possibilities: spectrum scores as a unifying metric of antibiotic utilization. Clin Infect Dis 2023;77:167173. doi: 10.1093/cid/ciad189 CrossRefGoogle ScholarPubMed
Ilges, D, Ritchie, DJ, Krekel, T, et al. Assessment of antibiotic de-escalation by spectrum score in patients with nosocomial pneumonia: a single-center, retrospective cohort study. Open Forum Infect Dis 2021;8:ofab508. doi: 10.1093/ofid/ofab508 CrossRefGoogle ScholarPubMed
Ho, D, Imai, K, King, G, Stuart, EA. MatchIt: nonparametric preprocessing for parametric causal inference. J Stat Softw 2011;42:128. doi: 10.18637/jss.v042.i08 CrossRefGoogle Scholar
Jain, S, Williams, DJ, Arnold, SR, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med 2015;372:835845. doi: 10.1056/NEJMoa1405870 CrossRefGoogle Scholar
Panteghini, M, Dolci, A, Birindelli, S, Szoke, D, Aloisio, E, Caruso, S. Pursuing appropriateness of laboratory tests: a 15-year experience in an academic medical institution. Clin Chem Lab Med 2022;60:17061718. doi: 10.1515/cclm-2022-0683 CrossRefGoogle Scholar
Pena, K, Cooper, M, Greer, N, Elders, T, Septimus, E. Process analysis of procalcitonin monitoring within community hospitals. Am J Health Syst Pharm 2020;77:632635. doi: 10.1093/ajhp/zxaa028 CrossRefGoogle ScholarPubMed
Bouadma, L, Luyt, CE, Tubach, F, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010;375:463474. doi: 10.1016/S0140-6736(09)61879-1 CrossRefGoogle Scholar
Christ-Crain, M, Jaccard-Stolz, D, Bingisser, R, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 2004;363:600607. doi: 10.1016/S0140-6736(04)15591-8 CrossRefGoogle ScholarPubMed
Schuetz, P, Wirz, Y, Sager, R, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2017;10:CD007498. doi: 10.1002/14651858.CD007498.pub3 Google ScholarPubMed
Branche, AR, Walsh, EE, Vargas, R, et al. Serum procalcitonin measurement and viral testing to guide antibiotic use for respiratory infections in hospitalized adults: a randomized controlled trial. J Infect Dis 2015;212:16921700. doi: 10.1093/infdis/jiv252 CrossRefGoogle ScholarPubMed
Daubin, C, Valette, X, Thiolliere, F, et al. Procalcitonin algorithm to guide initial antibiotic therapy in acute exacerbations of COPD admitted to the ICU: a randomized multicenter study. Intensive Care Med 2018;44:428437. doi: 10.1007/s00134-018-5141-9 CrossRefGoogle Scholar
Wussler, D, Kozhuharov, N, Tavares Oliveira, M, et al. Clinical utility of procalcitonin in the diagnosis of pneumonia. Clin Chem 2019;65:15321542. doi: 10.1373/clinchem.2019.306787 CrossRefGoogle ScholarPubMed
Malley, BE, Yabes, JG, Gimbel, E, et al. Impact of adherence to procalcitonin antibiotic prescribing guideline recommendations for low procalcitonin levels on antibiotic use. BMC Infect Dis 2023;23:30. doi: 10.1186/s12879-022-07923-0 CrossRefGoogle ScholarPubMed
Walsh, TL, DiSilvio, BE, Hammer, C, et al. Impact of procalcitonin guidance with an educational program on management of adults hospitalized with pneumonia. Am J Med 2018;131:201 e1201 e8. doi: 10.1016/j.amjmed.2017.08.039 CrossRefGoogle ScholarPubMed
Akagi, T, Nagata, N, Wakamatsu, K, et al. Procalcitonin-guided antibiotic discontinuation might shorten the duration of antibiotic treatment without increasing pneumonia recurrence. Am J Med Sci 2019;358:3344. doi: 10.1016/j.amjms.2019.04.005 CrossRefGoogle ScholarPubMed
Newton, JA, Robinson, S, Ling, CLL, Zimmer, L, Kuper, K, Trivedi, KK. Impact of procalcitonin levels combined with active intervention on antimicrobial stewardship in a community hospital. Open Forum Infect Dis 2019;6:16. doi:10.1093/ofid/ofz355 Google Scholar
Grace, E, Turner, RM. Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement therapy. Clin Infect Dis 2014;59:17611767. doi: 10.1093/cid/ciu732 CrossRefGoogle ScholarPubMed
Kim, JH. Clinical utility of procalcitonin on antibiotic stewardship: a narrative review. Infect Chemother 2022;54:610620. doi: 10.3947/ic.2022.0162 CrossRefGoogle ScholarPubMed
Haeuptle, J, Zaborsky, R, Fiumefreddo, R, et al. Prognostic value of procalcitonin in Legionella pneumonia. Eur J Clin Microbiol Infect Dis 2009;28:5560. doi: 10.1007/s10096-008-0592-5 CrossRefGoogle ScholarPubMed
Liu, D, Su, LX, Guan, W, Xiao, K, Xie, LX. Prognostic value of procalcitonin in pneumonia: a systematic review and meta-analysis. Respirology 2016;21:280288. doi: 10.1111/resp.12704 CrossRefGoogle ScholarPubMed
Liu, D, Su, L, Han, G, Yan, P, Xie, L. Prognostic value of procalcitonin in adult patients with sepsis: a systematic review and meta-analysis. PLoS One 2015;10:e0129450. doi: 10.1371/journal.pone.0129450 CrossRefGoogle ScholarPubMed
Supplementary material: File

Ilges et al. supplementary material

Ilges et al. supplementary material
Download Ilges et al. supplementary material(File)
File 30 KB