Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T23:14:56.853Z Has data issue: false hasContentIssue false

Biological Implications of Organic Compounds in Comets

Published online by Cambridge University Press:  12 April 2016

Joseph N. Marcus
Affiliation:
Departments of Pathology and Medical Microbiology, Creighton UniversityOmaha, NE 68131, U.S.A.
Margaret A. Olsen
Affiliation:
Departments of Pathology and Medical Microbiology, Creighton UniversityOmaha, NE 68131, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Organic chemicals — compounds that contain carbon — are the substance of life and pervade the universe. Is there a connection between comets, which are rich in prebiotic organics, and the origin of life? Current concepts of biomolecular evolution are first reviewed, including the important paradigm of catalytic RNA. At the very least, impacting comets appear to have supplied a substantial fraction of the volatile elements required for life shortly after the Earth formed. Some impacting material may even have survived chemically intact to directly provide necessary complex prebiotic organic chemicals. For life to originate and evolve in comets themselves, liquid H2O would be absolutely required: arguments for and against 26Al radiogenic melting of cometary cores are presented. Cometary panspermia, if theoretically possible, is not necessary to explain the origin of life on Earth. The Halley spacecraft provide evidence against Earth-type microorganisms in this comet’s dust.

Type
Section III: Comets, Origins, and Evolution
Copyright
Copyright © Kluwer 1991

References

Agarwal, V.K., Schutte, W., Greenberg, J.M., et al. (1986). Photochemical reactions in interstellar grains: Photolysis of CO, NH3, and H2O. Origins Life 16, 2140.Google Scholar
Agol, V.I. (1976). An aspect of the origin and evolution of viruses. Origins Life 7, 119132.Google Scholar
A’Hearn, M.F., Hoban, S., Birch, P.V., Bowers, C., Martin, R., and Klinglesmith, D.A III (1986). Cyanogen jets in comet Halley. Nature 324, 649651.Google Scholar
Allen, D.A, and Wickramasinghe, D.T. (1981). Diffuse interstellar absorption bands between 2.9 and 4.0µm. Nature 294, 239240.Google Scholar
Amari, S., Anders, E., Virag, A., and Zinner, E. (1990). Interstellar graphite in meteorites. Nature 345, 238240.Google Scholar
Anders, E. (1989). Pre-biotic organic matter from comets and asteroids. Nature 342, 255257.Google Scholar
Arrhenius, S. (1903). In The Quest for Extraterrestrial Life. Goldsmith, D., ed., University Science Books, California, 1980, pp. 3233 (transl. by D. Goldsmith from die Umschau 7, 481).Google Scholar
Bada, J.L., Cronin, J.R., Ho, M-S., et al. (1983). Reported optical activity of amino acids in the Murchison meteorite. Nature 301, 494496.Google Scholar
Bar-Nun, A., Lazcano-Araujo, A., and Oró, J. (1981). Could life have evolved in cometary nuclei? Origins Life 11, 387394.Google Scholar
Bell, M.B., Feldman, P.A, Kwok, S., and Matthews, H.E. (1982). Detection of H1N in IRC+10°216. Nature 295, 389391.Google Scholar
Benner, S.A, Ellington, D.D., and Tauer, A. (1989). Modern metabolism as a palimpsest of the RNA world. Proc. Nati. Acad. Sci. U.S.A. 86, 70547058.Google Scholar
Bernath, P.F., Hinkle, K.H., and Keady, J.J. (1989). Detection of C5 in the circumstellar shell of IRC+10216. Science 244, 562564.Google Scholar
Berner, R.A, and Lasaga, A.C. (1989). Modeling the geochemical carbon cycle. Sci. Am. 260, 7481.Google Scholar
Bockelée-Morvan, D., Depois, D., Paubert, G., Colom, P., and Crovisier, J. (1990). Comet Austin (1989cl). I.A.U. Circular 5020.Google Scholar
Campbell, P. (1983). Infrared data debugged. Nature 306, 218219.Google Scholar
Carlin, R.K. (1980). Poly(A): A new evolutionary probe. J. Theoret. Biol. 82, 353362.Google Scholar
Cech, T.R. (1986a). RNA as an enzyme. Sci. Am. 255(5), 6475.Google Scholar
Cech, T.R. (1986b). A model for the RNA-catalyzed replication of RNA. Proc. Natl. Acad. Sci. USA 83, 43604363.Google Scholar
Chamberlin, T.C., and Chamberlin, R.T. (1908). Early terrestrial conditions that may have favored organic synthesis. Science 28, 897911.Google Scholar
Chu, C.M. (1948). Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin. J. Hygiene 46, 247251.Google Scholar
Chyba, C. (1987). The cometary contribution to the oceans of primitive earth. Nature 330, 632635.Google Scholar
Chyba, C. (1990). Impact delivery and erosion of planetary oceans in the early inner Solar System. Nature 343, 129133.Google Scholar
Chyba, C., and Sagan, C. (1987). Cometary organics but no evidence for bacteria. Nature 329, 208.Google Scholar
Chyba, C., and Sagan, C. (1989). The pre- and post-accretion irradiation history of cometary ice. In Interstellar Dust, Tielins, A.G.G.M., and Allentandola, L.J., eds., NASA Conference Publication 3036, pp. 433435.Google Scholar
Clark, B.C. (1988). Primeval procreative comet pond. Origins Life 18, 209238 Google Scholar
Claus, G., and Nagy, B. (1961). A microbiological examination of some carbonaceous chondrites. Nature 192, 594596.Google Scholar
Combes, M., Moroz, V.I., Crovisier, J., et al. (1988). The 2.5-µm spectrum of comet Halley from the IKS-VEGA experiment. Icarus 76, 404436.Google Scholar
Cosmovici, C.B., Schwarz, G., Ip, W-H., and Mack, P. (1988). Gas and dust jets in the inner coma of comet Halley. Nature 332, 705709.Google Scholar
Crick, F.H.C. (1968). The origin of the genetic code. J. Mol. Biol. 38, 367379.Google Scholar
Cronin, J.R. (1989). Amino acids and bolide impacts. Nature 339, 423424.Google Scholar
Cronin, J.R., Pizzarello, S., and Cruikshank, D.P. (1988). Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In Meteorites and the Early Solar System, Kerridge, J.F., and Matthews, M.S., eds., University of Arizona Press, Tucson, pp. 819857.Google Scholar
Cronin, J.R., Pizzarello, S., and Moore, C.B. (1979). Amino acids in an antarctic carbonaceous chondrite. Science 206, 335337.Google Scholar
Deamer, D.W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 793794.Google Scholar
Deamer, D.W., and Pashley, R.M. (1989). Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation. Origins Life 19, 2138.Google Scholar
Delsemme, A.H. (1981). Are comets connected to the origin of life? In Comets and the Origin of Life, Ponnamperuma, C., ed., D. Reidel Publ. Co., Dordrecht, Netherlands, pp. 141159.Google Scholar
Delsemme, A. (1982). Chemical composition of cometary nuclei. In Comets, Wilkening, L.L., ed., University of Arizona Press, Tucson, pp. 85130.Google Scholar
Delsemme, A.H. (1984). The cometary connection with prebiotic chemistry. Origins Life 14, 5160.Google Scholar
Delsemme, A.H. (1990). Organic compounds in comets: An astrophysical view. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Donn, B. (1982). Comets: Chemistry and evolution. J. Mol. Evol. 18, 157160 Google Scholar
Doudna, J.A, and Szostak, J.W. (1989). RNA-catalyzed synthesis of complementary-strand RNA. Nature 339, 519522.Google Scholar
Eberhardt, P., Krankowski, D., Schulte, W., et al. (1987). The CO and NH2 abundance in comet P/Halley. Astronomy Astrophys. 187, 481484.Google Scholar
Eigen, M., Lindemann, B., Tietze, M., Winkler-Oswatitsch, R., Dress, A., and von Haeseler, A. (1989). How old is the genetic code? Statistical geometry provides an answer. Science 244, 673679.Google Scholar
Encrenaz, T., and Knacke, R. (1990). Carbonaceous compounds in comets. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Epstein, S., Krishnamurphy, R.V., Cronin, J.R., Pizzarello, S., and Yuen, G.U. (1987). Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326, 477479.Google Scholar
Fegley, B. Jr., Prinn, R.G., Hartman, H., and Watkins, G.H. (1986). Chemical effects of large impacts on the earth’s primitive atmosphere. Nature 319, 305308.Google Scholar
Ferris, J.P. (1987). Prebiotic synthesis: Problems and challenges. Cold Spring Harbor Symp. Quant. Biol. 52, 2935.Google Scholar
Ferris, J.P. (1988). Comet Halley — A good omen! Origins Life 18, 161163.Google Scholar
Gilbert, W. (1987). The exon theory of genes. Cold Spring Harbor Symp. Quant. Biol. 52, 901905.Google Scholar
Greenberg, J.M. (1981). Chemical evolution of interstellar dust — A source of prebiotic material? In Comets and the Origin of Life, Ponnamperuma, C., ed., D. Reidel Publ. Co., Dordrecht, Netherlands, pp. 111127.Google Scholar
Greenberg, J.M. (1982). What are comets made of? A model based on interstellar dust. In Comets, Wilkening, L.L., ed., University of Arizona Press, Tucson, pp. 131163.CrossRefGoogle Scholar
Greenberg, J.M. (1984). Chemical evolution in space. Origins Life 14, 2536.Google Scholar
Greenberg, J.M. (1987). Comet Halley: A carrier of interstellar dust chemical evolution. Adv. Space Res. 7, 3344.Google Scholar
Greenberg, J.M., Zhao, N., and Hage, J. (1989). Chemical evolution of interstellar dust, comets and the origin of life. Ann. Phys. Fr. 14, 103131.Google Scholar
Greve, J.M., Davis, G., Meyer, A.M., et al., (1989). The major human rhinovirus receptor is ICAM-1. Cell 56, 839847.Google Scholar
Henderson, I.M., Hendy, M.D., and Penny, D.J. (1989). Influenza viruses, comets and the science of evolutionary trees. J. Theoret. Biol. 140, 289303.Google Scholar
Hori, H., and Ozawa, S. (1987). Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol. Biol. Evol. 4, 445472.Google Scholar
Hoyle, F. (1984). The Intelligent Universe, Holt, Rinehart and Winston, New York.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1977). Identification of the 2,200 Å interstellar absorption feature. Nature 270, 323324.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1978). Influenza from space? New Scientist 79, 946948.Google Scholar
Hoyle, F., and Wickramasinghe, C. (1979). Diseases From Space. Dent, London, pp. 152154.Google Scholar
Hoyle, F., and Wickramasinghe, C. (1981). Comets — A vehicle for panspermia. In Comets and the Origin of Life, Ponnamperuma, C., ed., D. Reidel Publ. Co., Dordrecht, Holland, pp. 227239.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1986). The case for life as a cosmic phenomenon. Nature 322, 509511.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1987). Organic dust in comet Halley. Nature 328, 117.Google Scholar
Hua, L-L., Kobayashi, K., Ochiai, E-I., Gehrke, C.W., Gerhardt, K.O., and Ponnamperuma, C. (1986). Identification and quantitation of nucleic acid bases in carbonaceous chondrites. Origins Life 16, 226227, 1986.Google Scholar
Huebner, W.F. (1987). First polymer in space identified in comet Halley. Science 237, 628630.Google Scholar
Hutcheon, I.D., and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26A1 heating of small planets. Nature 377, 238241.Google Scholar
Ip, W-H., and Fernandez, J.A. (1988). Exchange of condensed matter among the outer and terrestrial protoplanets and the effect of surface impact and atmospheric accretion. Icarus 74, 4761.Google Scholar
Irvine, W.M., and Hjalmarson, A. (1984). The chemical composition of interstellar molecular clouds. Origins Life 14, 1523.Google Scholar
Irvine, W.M., Leschine, S.B., and Schloerb, F.P. (1980). Thermal history, chemical composition, and relationship of comets to the origin of life. Nature 283, 748749.Google Scholar
Ivanov, C.P., Stoyanova, R.Z., and Mancheva, I.N. (1984). Some evidence for the possible presence of peptides in two chondrites by use of a sequencing procedure. Origins Life 14, 6168.Google Scholar
Jessberger, E. (1990). Chemical properties of cometary dust. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Jessberger, E.K., and Kissel, J. (1987). Bits and pieces of Halley’s comet. Lunar Planet. Sci. Conf. XVII, 466467.Google Scholar
Johnstone, A., and Krankowsky, D. (1990). The composition of comets. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Joyce, G.F. (1987). Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harbor Symp. Quant. Biol. 52, 4151.Google Scholar
Joyce, G.F., Schwartz, A.W., Miller, S.L., and Orgel, L.E. (1987). The case for an ancestral genetic system involving simple analogs of the nucleotides. Proc. Natl. Acad. Sci. USA 84, 43984402.Google Scholar
Joyce, G.F., Visser, G.M., van Boekei, C.AA, van Boom, J.H., Orgel, L.E., and van Westrench, J. (1984). Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602604.Google Scholar
Kissel, J., and Krueger, F.R. (1987). The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755760.Google Scholar
Knoll, A.H., and Barghoorn, E.S. (1977). Archean microfossils showing cell division from the Swaziland system of South Africa. Science 198, 396398.Google Scholar
Korth, A., Marconi, M.L., Mendis, D.A, et al. (1989). Probable detection of organic-dust-borne aromatic C3H3+ ions in the coma of comet Halley. Nature 337, 5355.Google Scholar
Krueger, F.R., and Kissel, J. (1989). Aspects of self-organization. Origins Life 19, 8793.Google Scholar
Kushner, D. (1981). Extreme environments: Are there any limits to life? In Comets and the Origin of Life, Ponnamperuma, C., ed., D. Reidel Publ. Co., Dordrecht, Holland, pp. 241248.Google Scholar
Langevin, Y., Kissel, J., Bertaux, J-L., and Chassefière, E. (1987). First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA (Vega 1) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes. Astron. Astrophys. 187, 761766.Google Scholar
Lazcano-Araujo, R., and Orò, J. (1981). Cometary material and the origins of life on earth. In Comets and the Origin of Life, Ponnamperuma, C., ed., D. Reidel Publ. Co., Dordrecht, Holland, 1981, pp. 191225.Google Scholar
Lazcano, A., Guerroro, R., Margulis, L., and Oró, J. (1988). The evolutionary transition from RNA to DNA in early cells. J. Mol. Evol. 27, 283290.Google Scholar
Leger, A., and Puget, J.L. (1984). Identification of the “unidentified” IR emission features of interstellar dust? Astron. Astrophys. 137, L5L8.Google Scholar
Lehninger, A.L. (1982). Biochemistry. Worth Publishers, Inc., New York, p. 46.Google Scholar
Maher, K.A., and Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature 331, 612614.Google Scholar
Mar, A., and Oró, J. (1989). Synthesis of the coenzymes, ADPG, CDPG, and CDP-ethanolamine under primitive earth conditions. Origins Life 19, 254255.Google Scholar
McKinnon, W.B. (1989). Impacts giveth and impacts taketh away. Nature 338, 465466.Google Scholar
McSween, H.Y. (1976). A new type of chondritic meteorite found in lunar soil. Earth Planet. Sci. Letters 31, 193199.Google Scholar
Melosh, H.J. (1985). Ejection of rock fragments from planetary bodies. Geology 13, 144148.Google Scholar
Miller, S.L. (1987). Which organic compounds would have occurred on the prebiotic earth? Cold Spring Harbor Symp. Quant. Biol. 52, 1727.Google Scholar
Minn, K., and Greenberg, J.M. (1987). Formaldehyde absorption and visual extinction in the dark cloud L1709. Astron. Astrophys. 184, 315321.Google Scholar
Mitchell, D.L., Lin, R.P., Anderson, K.A., et al. (1987). Evidence for chain molecules enriched in carbon, hydrogen, and oxygen in comet Halley. Science 237, 626628.Google Scholar
Morowitz, H.J., Heinz, B., and Deamer, D.W. (1988). The chemical logic of a minimum protocell. Origins Life 18, 281287.Google Scholar
Muhkin, L.M., Gerasimov, M.V., and Safonova, E.N. (1989). Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340, 4648.Google Scholar
Mumma, M.J., Weaver, H.A., and Larson, H.P. (1987). The ortho-para ratio of water vapor in comet P/Halley. Astron. Astrophys. 187, 419424.Google Scholar
Oberbeck, V.R., and Fogelman, G. (1989a). Impacts and the origin of life. Nature 339, 434 Google Scholar
Oberbeck, V.R., and Fogleman, G. (1989b). Estimates of the maximum time required to originate life. Origins Life 19, 549560.Google Scholar
Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989). The role of cometary particle coalescence in chemical evolution. Origins Life 19, 3955.Google Scholar
Orgel, L.E. (1968). The evolution of the genetic apparatus. J. Mol. Biol. 38, 381393.Google Scholar
Orgel, L.E. (1987). Evolution of the genetic apparatus: A review. Cold Spring Harbor Symp. Quant. Biol. 52, 916.Google Scholar
Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive earth. Nature 190, 389390.Google Scholar
Oró, J., and Berry, J.M. (1987). Comets and life. Adv. Space Res. 7, 2332.Google Scholar
Pflug, H.D. (1984a). Early geological record and the origin of life. Naturwiss. 71, 6368.Google Scholar
Pflug, H.D. (1984b). Microvesicles in meteorites, a model of pre-biotic evolution. Naturwiss. 71, 531532.Google Scholar
Ponnamperuma, C., and Ochiai, E. (1982). Comets and the origin of life. In Comets, Wilkening, L., ed., University of Arizona Press, Tucson, pp. 696703.Google Scholar
Prialnik, D., Bar-Nun, A., and Podolak, M. (1987). Radiogenic heating of comets by 26Al and implications for their time of formation. Astrophys. J. 319, 9931002.Google Scholar
Rickman, H. (1990). The thermal history and structure of cometary nuclei. In Comets in the Post-Halley Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Robertson, D.L., and Joyce, G.F. (1990). Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467468.Google Scholar
Sagan, C., and Khare, B.N. (1979). Tholins: Organic chemistry of interstellar grains and gas. Nature 277, 102107.Google Scholar
Sekanina, Z. (1983). The Tunguska event: No cometary signature in evidence. Astron. J. 88, 13821414.Google Scholar
Senn, S.J. (1981). Can you really catch cold from a comet? New Scientist 92, 244246.Google Scholar
Shapiro, R. (1988). Prebiotic ribose synthesis: A critical analysis. Origins Life 18, 7186.Google Scholar
Shidlowski, M. (1988). A 3,800-million year isotopie record of life from carbon in sedimentary rocks. Nature 333, 313318.Google Scholar
Shidlowski, M. (1989). Initiation of life processes on the early earth: A case for panspermia? Origins Life 19, 454455.Google Scholar
Shock, E.L., and Schulte, M.D. (1990). Amino acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728731.Google Scholar
Sleep, N.H., Sahnle, K.J., Kasting, J.F., and Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139142.Google Scholar
Snyder, L.E., Hollis, J.M., Svenram, R.D., Lovas, F.J., Brown, L.W., and Buhl, D. (1983). An extensive search for conformer II glycine. Astrophys. J. 268, 123128.Google Scholar
Staunton, D.E., Merluzzi, V.J., Rothlein, R., Barton, R., Marlin, S.D., and Springer, T.A. (1989). A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinovirus. Cell 56, 849853.Google Scholar
Strazzulla, G., Calcagno, L., and Foti, G. (1983). Mon. Not. R. Astron. Soc. 204, 59p62p.Google Scholar
Strazzula, G., and Johnson, R.E. (1990). Irradiation effects on comets and cometary debris. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Stribling, R., and Miller, S.L. (1987). Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive ocean. Origins Life 17, 261273.Google Scholar
Thomas, P.J., Chyba, C.F., Brookshaw, L., and Sagan, C. (1989). Impact delivery of organic molecules to the early earth and implications for the terrestrial origin of life. Lunar Planet. Sci. Conf. XX, 11171118.Google Scholar
Urey, H.C. (1966). Biological material in meteorites: A review. Science 151, 157166.Google Scholar
Waldrop, M.M. (1989). Catalytic RNA wins the chemistry Nobel. Science 246, 325 Google Scholar
Waldrop, M.M. (1990). Spontaneous order, evolution, and life. Science 247, 1543.Google Scholar
Walker, J.C.G., Klein, C., Shidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R. (1983). In Earth’s Earliest Biosphere: Its Origin and Evolution, Schopf., J., ed., Princeton University Press, Princeton, New Jersey, pp. 260290.Google Scholar
Wallis, M.K (1980). Radiogenic melting of primordial comet interiors. Nature 284, 431433.Google Scholar
Wdowiak, T.J., Flickinger, G.C., and Cronin, J.R. (1989). Insoluable organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. Astrophys. J. 328, L75L79.Google Scholar
Weber, A.L. (1989). Glyceraldehyde as a source of energy and matter for the origin of life. Origins Life 19, 317318.Google Scholar
Weber, P., and Greenberg, J.M. (1985). Can spores survive in interstellar space? Nature 316, 403407.Google Scholar
Weiner, A.M. (1987). The origins of life. In Molecular Biology of the Gene, 4th. ed., Watson, J.D., et al., eds., The Benjamins/Cummings Publ. Co., Inc., Menlo Park, California, pp. 10981163.Google Scholar
Weissman, P.R. (1983). The mass of the Oort cloud. Astron. Astrophys. 118, 9095.Google Scholar
Weissman, P.R. (1988). The impact history of the solar system: Implications for the origin of atmospheres. In Origin and Evolution of Planetary and Satellite Atmospheres, Atreya, S.K., et al., eds., University of Arizona Press, Tucson, pp. 230267.Google Scholar
Weissman, P.R. (1989). Physical processing of cometary nuclei since their formation. In Comet Halley 1986: Worldwide Investigations, Results and Interpretations, Moore, P., and Mason, J., eds., Ellis Horwood Ltd., Chichester, U.K., in press.Google Scholar
Weissman, P.R. (1990a). The Oort Cloud. Nature 344, 825830.Google Scholar
Weissman, P.R. (1990b). Dynamical history of the Oort cloud. In Comets in the Post-Hallev Era, Newburn, R.L. Jr., Neugebauer, M., and Rahe, J., eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.Google Scholar
Wetherill, G.W. (1979). Apollo objects. Sci. Am. 240, 5465.Google Scholar
Wickramasinghe, D.T., and Allen, D.A (1980). The 3.4-µm interstellar absorption feature. Nature 287, 518519.Google Scholar
Woese, C.R. (1967). The origin of the genetic code. Harper and Row, New York, p. 193.Google Scholar
Woese, C.R. (1987). Bacterial evolution. Microbiol. Rev. 51, 221271.Google Scholar
Zhao, M., and Bada, J.L. (1989). Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339, 463465.Google Scholar