Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T12:38:42.775Z Has data issue: false hasContentIssue false

Carbonaceous Compounds in Comets: Infrared Observations

Published online by Cambridge University Press:  12 April 2016

T. Encrenaz
Affiliation:
Observatoire de Paris DESPA, URA 264 92195 Meudon, France
R. Knacke
Affiliation:
Astronomy Program, Department of Earth and Space Sciences, State University of New York, Stony Brook

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Comet Halley observations showed that carbon is a major component of the comet nucleus, with mass spectroscopic data giving near-cosmic C/O ratios. Gaseous and solid compounds were also observed with infrared spectroscopy, which gave detections of CO and CO2, probable detections or upper limits of H2CO and CH4, and a tentative detection of OCS. The CH4/CO ratio of less than unity in Comet Halley points to a CO-rich solar nebula; however, the ratio is higher than in interstellar clouds. A broad, complicated emission feature near 3.4 μm is evidence for carbonaceous compounds containing C-H groups in gas or solid phases. Analysis of radiation mechanisms and abundance constraints suggests that thermal emission or transient heating by single photons can account for the 3.4-μm emission feature. The band resembles (but is not identical to) bands of carbonaceous chondrite organic material, synthetic materials, and interstellar carbonaceous bands. Direct connections among these materials are possible, but have not been established.

Type
Section I: Observing Techniques and Interpretation
Copyright
Copyright © Kluwer 1991

References

A’Hearn, M.F., et al. (1986). ‘Cyanogen Jets in Comet Halley,’ Nature, 324, 649651.Google Scholar
A’Hearn, M.F., and Feldman, P.D. (1980). ‘Carbon in Comet Bradfield 1979l,’ Astrophys. J., 242, L187L190.Google Scholar
A’Hearn, M.F., Feldman, P.D., and Schleicher, D.G. (1983). ‘The Discovery of S2 in Comet IRAS-Araki-Alcock (1983d),’ Astrophys. J., 274, L99L103.CrossRefGoogle Scholar
Allamandola, L. (1988). Private communication.Google Scholar
Allen, D.A., and Wickramasinghe, D.T. (1987). ‘Discovery of Organic Grains in Comet Wilson,’ Nature, 329, 615616.Google Scholar
Allen, M., et al. (1987). ‘Evidence for Methane and Ammonia in the Coma of Comet P/Halley,’ Astron. Astrophys., 187, 502512.Google ScholarPubMed
Anders, E., Hayatsu, R., and Studier, M.H. (1973). ‘Organic Compounds in Meteorites,’ Science, 182, 781790.Google Scholar
Azoulay, G., and Festou, M.C. (1986). ‘The Abundance of Sulphur in Comets,’ in Lagerkvist, C.-I. et al. (eds.), Asteroids, Comets, Meteors II, Uppsala University Press, Uppsala, pp. 273277.Google Scholar
Baas, F., Geballe, T.R., and Walther, D.M. (1986). ‘Spectroscopy of the 3.4-Micron Emission Feature in Comet Halley,’ Astrophys. J., 311, L97L101.CrossRefGoogle Scholar
Becklin, E.E., and Westphal, J.A. (1966). ‘Infrared Observations of Comet 1965f,’ Astrophys. J., 145, 445453.CrossRefGoogle Scholar
Bellamy, L.J. (1975). ‘The Infrared Spectra of Complex Molecules,’ Vol. I, Chapman and Hall, London.Google Scholar
Biermann, L., Giguere, P.T., and Huebner, W.F. (1982). ‘A Model of a Comet Coma With Interstellar Molecules in the Nucleus,’ Astron. Astrophys., 108, 221226.Google Scholar
Bisikalo, D.V., Repin, S.V., and Strelnitskiz, V.S. (1986). Astron. Tsirk. No. 1450.Google Scholar
Bockelee-Morvan, D. (1987). ‘A Model for the Excitation of Water in Comets,’ Astron. Astrophys., 181, 169181.Google Scholar
Bockelee-Morvan, D., and Crovisier, J. (1987). ‘The 2.7-μm Water Band of Comet P/Halley: Interpretation of Observations by an Excitation Model,’ Astron. Astrophys., 187, 425430.Google Scholar
Bockelee-Morvan, D.M., et al. (1987). ‘Molecular Observations of Comets P/Giacobini-Zinner 1984 and P/Halley 1982i at Millimeter Wavelengths,’ Astron. Astrophys., 180, 253262.Google Scholar
Bregman, J.D., Campins, H., Witteborn, F.C., Wooden, D.M., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne and Groundbased Spectrophotometry of Comet P/Halley From 15 to 13 Micrometers,’ Astron. Astrophys., 187, 616620.Google Scholar
Brooke, T.Y., and Knacke, R.F. (1986). ‘The Nucleus of Comet P/Arend-Rigaux,’ Icarus, 67, 8087.Google Scholar
Brooke, T.Y., and Tokunaga, A.T. (1990). ‘Comparison of the 3.4-μm Emission Feature in Comets,’ Icarus, in press.Google Scholar
Brooke, T.Y., Knacke, R.F., Owen, T.C., and Tokunaga, A.T. (1989). ‘Spectroscopy of Emission Features Near 3 Microns in Comet Wilson (19861),’ Astrophys. J., 336, 971978.CrossRefGoogle Scholar
Brooke, T.Y., Tokunaga, A.T., Knacke, R.F., Owen, T.C., Mumma, M.J., Reuter, D., and Storrs, A.D. (1989). ‘Detection of the 3.4- and 2.8-μm Emission Features in Comet Bradfield (1987s),’ Icarus, in press.Google Scholar
Brownlee, D.E. (1988). ‘A Comparison of Halley Dust With Meteorites, Interplanetary Dust, and Interstellar Grains,’ in Hanner, M.S. (ed.), Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004, pp. 6667.Google Scholar
Butchart, I., McFadzean, A.D., Whittet, D.C.B., Geballe, T.R., and Greenberg, J.M. (1986). ‘The Micron Spectroscopy of the Galactic Center Source 1RS 7,’ Astron. Astrophys., 154, L5L7.Google Scholar
Campins, H., et al. (1986). ‘Airborne Spectrophotometry of Comet Halley From 5 to 9 Microns,’ in Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, pp. 121124.Google Scholar
Chin, G., and Weaver, H.A. (1984). ‘Vibrational and Rotational Excitation of CO in Comets: Nonequilibrium Calculations,’ Astrophys. J., 285, 858869.CrossRefGoogle Scholar
Chyba, C., and Sagan, C.. (1987a). ‘Infrared Emission by Organic Grains in the Coma of Comet Halley,’ Nature, 330, 350353.CrossRefGoogle Scholar
Chyba, C., and Sagan, C.. (1987b). ‘Cometary Organics But No Evidence for Bacteria,’ Nature, 329, 208.CrossRefGoogle Scholar
Chyba, C., Sagan, C., and Mumma, M.J. (1989). ‘The Heliocentric Evolution of Cometary Infrared Spectra: Results for an Organic Grain Model,’ Icarus, in press.Google Scholar
Clark, B.C., Mason, L.W., and Kissel, J. (1987). ‘Systematics of the “CHON” and Other Light-Element Particle Populations in Comet P/Halley,’ Astron. Astrophys., 187, 779784.Google Scholar
Colangeli, L., Schwehm, G., Busoletti, E., Fonti, S., Blanco, A., and Orofina, V. (1989). ‘The Unidentified IR Bands in Laboratory, Interstellar Medium, and in Comets,’ in 22nd ESLAB Conference, Infrared Spectroscopy in Astronomy, ESA SP-290, in press.Google Scholar
Combes, M., et al. (1986). ‘Infrared Sounding of Comet Halley From VEGA 1,’ Nature, 321, 266268.CrossRefGoogle Scholar
Combes, M., et al. (1988). ‘The 2.5-12 μm Spectrum of Comet Halley From the IKS-VEGA Experiment,’ Icarus, 76, 404436.Google Scholar
Crovisier, J. (1984). ‘The Water Molecule in Comets: Fluorescence Mechanisms and Thermodynamics of the Inner Coma,’ Astron. Astrophys., 13, 361372.Google Scholar
Crovisier, J. (1987). ‘Rotational and Vibrational Synthetic Spectra of Linear Parent Molecules in Comets,’ Astron. Astrophys. Suppl., 68, 223258.Google Scholar
Crovisier, J., and Bourlot, J. (1983). ‘Infrared and Microwave Fluorescence of Carbon Monoxide in Comets,’ Astron. Astrophys., 123, 6166.Google Scholar
Crovisier, J., and Encrenaz, Th. (1983). ‘Infrared Fluorescence of Molecules in Comets: The General Synthetic Spectrum,’ Astron. Astrophys., 126, 170182.Google Scholar
Cruikshank, D.P., and Brown, R.H. (1987). ‘Organic Matter on Asteroid 130 Elektra,’ Science, 238, 183284.Google Scholar
Danks, A.C., Encrenaz, Th., Bouchet, P., LeBertre, T., and Chalabaev, A. (1987). ‘The Spectrum of Comet P/Halley From 3-0 to 4.0 μm,’ Astron. Astrophys., 184, 329332.Google Scholar
Delsemme, A.H. (1982). ‘Chemical Composition of Cometary Nuclei,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 85130.CrossRefGoogle Scholar
Despois, D., Crovisier, J., Bockelee-Morvan, D., Schram, J., Forveille, J., and Gerard, E. (1986). ‘Observations of Hydrogen Cyanide in Comet Halley,’ Astron. Astrophys., 160, L11L12.Google Scholar
D’Hendecourt, L.B., Allamandola, L.J., Grim, R.J.A., and Greenberg, J.M. (1986). ‘Time-Dependent Chemistry in Dense Molecular Clouds. II. Ultraviolet Photoprocessing and Infrared Spectroscopy of Grain Mantles,’ Astron. Astrophys., 158, 119134.Google Scholar
Dischler, B., Bubenzer, A., and Kordl, P. (1983). ‘Bonding in Hydrogenated Hard Carbon Studied by Optical Spectroscopy,’ Solid State Comm., 48, 105108.Google Scholar
Drapatz, S., Larson, H.P., and Davis, D.S. (1987). ‘Search for Methane in Comet P/Halley,’ Astron. Astrophys., 187, 497501.Google Scholar
Eberhardt, P., et al. (1987). ‘The CO and N2 Abundance in Comet P/Halley,’ Astron. Astrophys., 187, 481484.Google Scholar
Emerich, C., et al. (1987). ‘Temperature and Size of the Nucleus of Comet P/Halley Deduced From IKS Infrared Vega 1 Measurements,’ Astron. Astrophys., 187, 839842.Google Scholar
Encrenaz, Th., Crovisier, M., Combes, M., and Crifo, J.F. (1982). ‘A Theoretical Study of Comet Halley’s Spectrum in the Infrared Range,’ Icarus, 51, 660664.Google Scholar
Encrenaz, Th., D’Hendecourt, L., and Puget, J.L. (1988). On the Interpretation of the 3.2-3.5 Micron Emission Feature in the Spectrum of Comet Halley: Abundances in P/Halley and in Interstellar Matter,’ Astron. Astrophys., 207, 162173.Google Scholar
Encrenaz, Th., Puget, J.L., Bibring, J.P., Combes, M., Crovisier, J., Emerich, C., D’Hendecourt, L., and Rocard, F. (1987). ‘On the Interpretation of the 3 μm Emission Feature in the Spectrum of Comet Halley: Abundances in Comet Halley and in Interstellar Matter,’ in Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 369376.Google Scholar
Feldman, P.D. (1982). ‘Ultraviolet Spectroscopy of Comae,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 461479.Google Scholar
Feldman, P.D., A’Hearn, M.F., Festou, M.C., McFadden, L.A., Weaver, H.A., and Woods, T.N. (1986). ‘Is CO2 Responsible for the Outbursts of Comet Halley?’, Nature, 324, 433436.Google Scholar
Festou, M.C., et al. (1986). ‘IUE Observations of Comet Halley During the Vega and Giotto Encounters,’ Nature, 321, 361363.Google Scholar
Gatley, I., Becklin, E.E., Neugebauer, G., and Werner, M.W. (1974). ‘Infrared Observations of Comet Kohoutek (1973f),’ Icarus, 23, 561565.Google Scholar
Geiss, J. (1988). ‘Composition in Halley’s Comet: Clues to Origin and History of Cometary Matter,’ in Klare, G. (ed.), Reviews in Modern Astronomy, Vol. 1, Springer-Verlag, Berlin.Google Scholar
Giguere, P.T., and Huebner, W.F. (1978). ‘A Model of Cometary Comae I. Gas-Phase Chemistry in One Dimension,’ Astrophys. J., 223, 638654.Google Scholar
Greenberg, J.M. (1982). ‘What Are Comets Made of? A Model Based on Interstellar Dust,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 131163.Google Scholar
Greenberg, J.M., and Zhao, N. (1988). Letter, Nature, 331, 124 Google Scholar
Hanner, M.S., and Tokunaga, A.T. (1990). ‘Infrared Techniques for Comet Observations,’ in this volume.Google Scholar
Hanner, M.S., et al. (1985). ‘The Dusty Coma of Periodic Comet Churyumov-Gerasimenko (1982 VIII),’ Icarus, 64, 1119.Google Scholar
Hanner, M.S., Aitken, D.K. Knacke, R., McCorkle, S., Roche, P.F., and Tokunaga, A.T. (1985). ‘Infrared Spectrophotometry of Comet IRAS-Araki-Alcock (1983d): A Bare Nucleus Revealed?’, Icarus, 62, 97109.CrossRefGoogle Scholar
Hanner, M.S., Knacke, R.F., Sekanina, Z., and Tokunaga, A.T. (1985). ‘Dark Grains in Comet Crommelin,’ Astron. Astrophys., 152, 177181.Google Scholar
Haser, L. (1957). ‘Distribution d’Intensité Dans la Tête d’une Comète,’ Bull. Acad. Roy. Belgique, Classe des Sciences, 43, 740750.Google Scholar
Hayatsu, R., Matsuoka, S., Scott, R.G., Studier, M.H., and Anders, E. (1977). ‘Origin of Organic Matter in the Early Solar System — VII. The Organic Polymer in Carbonaceous Chondrites,’ Geochim. Cosmochim. Acta., 41, 13251339.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1987). Organic Dust in Comet Halley,’ Nature, 328, 117.Google Scholar
Huebner, W.F. (1987). ‘First Polymer in Space Identified in Comet Halley,’ Science, 237, 628630.Google Scholar
Huebner, W.F., Boice, D.C., and Sharp, C.M. (1987). ‘Polyoxymethylene in Comet Halley,’ Astrophys. J., 320, L49L52.Google Scholar
Huebner, W.F., Giguere, P.T., and Slattery, W.L. (1982). ‘Photochemical Processes in the Inner Coma,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 496515.Google Scholar
Huebner, W.F., Snyder, L.E., and Buhl, D. (1974). ‘HCN Emission of Comet Kohoutek (1973f); Icarus, 23, 580584.Google Scholar
Irvine, W., and Knacke, R.F. (1989). ‘The Chemistry of Interstellar Gas and Grains,’ in Atreya, S.K., Pollack, J.B., and Matthews, M.S. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 334.CrossRefGoogle Scholar
Jessberger, E.K. (1990). ‘Chemical Properties of Cometary Dust,’ in this volume.Google Scholar
Jessberger, E.K., Kissel, J., and Rahe, J. (1989). ‘The Composition of Comets,’ in Atreya, S.K., Pollack, J.B., and Matthews, M.S. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 167191.Google Scholar
Johnson, T.V., Brown, R.H., and Pollack, J.B. (1987). ‘Uranus Satellites: Densities and Composition,’ J. Geophys. Res., 92, 14, 884894.Google Scholar
Kawara, K., Gregory, B., Yamamoto, T., and Shibai, H. (1989). ‘Infrared Spectroscopie Observation of Methane in Comet P/Halley,’ Astron. Astrophys., 207, 174181.Google Scholar
Keller, H.U., and Lillie, C.F. (1974). ‘The Scale Length of OH and the Production of H and OH in Comet Bennett (1970 II); Astron. Astrophys., 34, 187196.Google Scholar
Keller, H.U., et al. (1986). ‘First Halley Multicolor Camera Imaging Results From Giotto,’ Nature, 321, 320326.Google Scholar
Kerridge, J.F., and Chang, S. (1985). ‘Survival of Interstellar Matter in Meteorites: Evidence From Carbonaceous Material,’ in Black, D.C. and Matthews, M.S. (eds.), Protostars and Planets II, University of Arizona Press, Tucson, pp. 738771.Google Scholar
Kim, S.J., and A’Hearn, M.F. (1989). ‘Sulfur Compounds in Comets,’ Icarus, in press.Google Scholar
Kissel, J., and Krueger, F.R. (1987). ‘The Organic Component in Dust for Comet Halley as Measured by the PUMA Mass Spectrometer on Board Vega 1,’ Nature, 326, 755760.Google Scholar
Kissel, J., et al. (1986). ‘Composition of Comet Halley Dust Particles From Vega Observations,’ Nature, 321, 280282.Google Scholar
Knacke, R.F. (1989). ‘Comet Dust Connections With Interstellar Dust,’ in Allamandola, L.J. and Tielens, A.G.G.M. (eds.), D. Reidel Publ. Co., Dordrecht, in press.Google Scholar
Knacke, R.F., and McCorkle, S. (1987). ‘Spectroscopy of the Kleinmann-Low Nebula: Scattering in a Solid Absorption Band,’ Astron. J., 94, 972976.Google Scholar
Knacke, R.F., Brooke, T.Y., and Joyce, R.R. (1986). ‘Observations of 3.2-3.6 Micron Emission Features in Comet Halley,’ Astrophys. J., 310, L49L53.Google Scholar
Knacke, R.F., Brooke, T.Y., and Joyce, R.R. (1987). ‘The 3.2-3.6 Micron Emission Features in Comet P/Halley: Spectral Identifications and Similarities,’ Astron. Astrophys., 187, 625628.Google Scholar
Knacke, R.F., Kim, Y.H., Noll, K.S., and Geballe, T.R. (1988). ‘Search for Interstellar Methane,’ in Dickman, R.L. et al. (eds.), Molecular Clouds in the Milky Way and External Galaxies, Springer-Verlag, Berlin, pp. 180181.Google Scholar
Koike, C., Hasegawa, H., and Manabe, A. (1980). ‘Extinction Coefficients of Amorphous Carbon Grains From 2100 Å to 340 μm,’ Astrophys. Space Sci., 67, 495502.Google Scholar
Korth, A., et al. (1989). ‘Probable Detection of Organic-Dust-Borne Aromatic C3H3 + Ions in the Coma of Comet Halley,’ Nature, 337, 5355.Google Scholar
Krankowsky, D., et al. (1986). ‘In Situ Gas and Ion Measurements at Comet Halley,’ Nature, 321, 326329.Google Scholar
Krishna Swamy, K.S., Sandford, S.A., Allamandola, L.J., Witteborn, F.C., and Bregman, J.D. (1988). ‘A Multicomponent Model of the Infrared Emission From Comet Halley,’ Icarus, 75, 351370.Google Scholar
Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1989). ‘Airborne Infrared Spectroscopy of Comet Wilson (19861) and Comparisons With Comet Halley,’ Astrophys. J., 11061114.Google Scholar
Leger, A., and d’Hendecourt, L. (1987). ‘Identification of PAHs in Astronomical IR Spectra—Implications,’ in Leger, A. et al. (eds.), Polycyclic Aromatic Hydrocarbons and Astrophysics, D. Reidel Publ. Co., Dordrecht, pp. 223254.Google Scholar
Leger, A., et al. (eds.) (1987). Polycyclic Aromatic Hydrocarbons and Astrophysics, D. Reidel Publ. Co., Dordrecht.Google Scholar
Lewis, J.S., and Prinn, R.G. (1980). ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula,’ Astrophys. J., 238, 357364.CrossRefGoogle Scholar
Maas, R.W., Ney, E.P., and Woolf, N.F. (1970). ‘The 10-Micron Emission Peak of Comet Bennett 1969i,’ Astrophys. J., 160, L101L104.Google Scholar
Millis, R.L., A’Hearn, M.F., and Campins, H. (1988). ‘An Investigation of the Nucleus and Coma of Comet P/Arend-Rigaux,’ Astrophys. J., 324, 11941209.Google Scholar
Mitchell, D.L., et al. (1987). ‘Evidence for Chain Molecules Enriched in Carbon, Hydrogen and Oxygen in Comet Halley,’ Science, 237, 626628.Google Scholar
Moroz, V.I., et al. (1987). ‘Detection of Parent Molecules in Comet P/Halley From the IKS-Vega Experiment,’ Astron. Astrophys., 187, 513518.Google Scholar
Mumma, M.J., and Reuter, D.C. (1989). ‘On the Identification of Formaldehyde in Halley’s Comet,’ preprint.Google Scholar
Mumma, M.J., Weaver, H.A., Larson, H.P., Davis, D.S., and Williams, M. (1986). ‘Detection of Water Vapor in Halley’s Comet,’ Science, 232, 15231528.Google Scholar
Ney, E.P. (1982). ‘Optical and Infrared Observations of Bright Comets in the Range 0.5 μm to 20 μm,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 323340.Google Scholar
Oishi, M., Okuda, H., and Wickramasinghe, N.C. (1978). ‘Infrared Observations of Comet West (1975n). II. A Model of the Cometary Dust,’ Publ. Astron. Soc. Japan, 30, 161171.Google Scholar
Priim, R.G., and Lewis, J.S. (1980). ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula,’ Astrophys. J., 238, 357364.Google Scholar
Rouxhet, P.G., Robin, P.L., and Nicaise, G. (1980). ‘Characterization of Kerogens and of Their Evolution by Infrared Spectroscopy,’ in Durand, B. (ed.), Kerogen, Editions Technip., Paris, pp. 163190.Google Scholar
Sagdeev, R.Z., et al. (1986). ‘Television Observations of Comet Halley From Vega Spacecraft,’ Nature, 321, 262266.Google Scholar
Sandford, S.A., and Allamandola, L. (1988). ‘The Condensation and Vaporization Behavior of H2OCO Ices and Implications for Interstellar Grains and Cometary Activity,’ Icarus, 76, 201204.Google Scholar
Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in Comet P/Halley,’ Astron. Astrophys., 187, 475480.Google ScholarPubMed
Scoville, N., Kleinmann, S.G., Hall, D.N.B., and Ridgway, S.T. (1983). ‘The Circumstellar and Nebular Environment of the Becklin-Neugebauer Object: λ = 2-5 Micron Spectroscopy,’ Astrophys. J., 225, 201224.CrossRefGoogle Scholar
Sellgren, K. (1984). ‘The Near-Infrared Continuum Emission of Visual Reflection Nebulae,’ Astrophys. J., 277, 623633.Google Scholar
Smith, R.G., Sellgren, K., and Tokunaga, A.T. (1989). ‘Absorption Features in the 3 Micron Spectra of Protostars,’ Astrophys. J., 344, 413426.Google Scholar
Snyder, L.E., Palmer, P., and de Pater, I. (1989). ‘Radio Detection of Formaldehyde Emission From Comet Halley,’ Astron. J., 97, 246253.Google Scholar
Swan, P., Walker, R.M., and Wopenka, B. (1987). ‘3.4 μm Absorption in Interplanetary Dust Particles: Evidence of Indigenous Hydrocarbons and a Further Link to Comet Halley,’ Meteoritics, 510511.Google Scholar
Swings, P., and Page, T.L. (1950). ‘The Spectrum of Comet Bester (1947k),’ Astrophys. J., 1ll, 530534.CrossRefGoogle Scholar
Tapia, M., Persi, P., Roth, M., and Ferrari-Toniolo, M. (1990). ‘Three-Micron Spectroscopy of Three Highly Reddened Field Stars,’ Astron. Astrophys., in press.Google Scholar
Tielens, A.G.G.M., and Allamandola, L.J. (1987). ‘Composition, Structure, and Chemistry of Interstellar Dust; in Hollenbach, D.J. and Thronson, H.A. Jr., (eds.), Interstellar Processes, D. Reidel Publ. Co., Dordrecht, pp. 397469.Google Scholar
Tokunaga, A.T., and Brooke, T.Y. (1990). ‘On Testing the Hypothesis via Infrared Spectroscopy That Comets Originated Directly From the Interstellar Medium,’ Icarus, in press.Google Scholar
Ulich, B.L., and Conklin, E.J. (1975). ‘Discovery of CH3CN in Comets,’ Nature, 248, 121122.Google Scholar
Walker, R.M. (1988). ‘Comparison of Laboratory Determined Properties of Interplanetary Dust With Those of Comet Halley Particles: What Are Comets Made of?,’ in Hanner, M. (ed.), Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004, pp. 5363.Google Scholar
Wdowiak, T.J., Flickinger, G.C., and Cronin, J.R. (1988). ‘Insoluble Organic Material of the Orgueil Carbonaceous Chondrite and the Unidentified Infrared Bands,’ Astrophys. J., 328, L75L79.Google Scholar
Weaver, H.A., and Mumma, M.J. (1984). ‘Infrared Molecular Emissions From Comets,’ Astrophys. J., 276, 782797.Google Scholar
Whipple, F.L. (1989). ‘Comets in the Space Age,’ Astrophys. J., 341, 115.Google Scholar
Wickramasinghe, D.T., and Allen, D.A. (1986). ‘Discovery of Organic Grains in Comet Halley,’ Nature, 324, 4446.Google Scholar
Wilkening, L.L. (ed.) (1982). Comets, University of Arizona Press, Tucson.Google Scholar
Woods, T.N., Feldman, P.D., Dymond, K.F., and Sahnow, D.J. (1986). ‘Rocket Ultraviolet Spectroscopy of Comet Halley and Abundance of Carbon Monoxide and Carbon,’ Nature, 324, 436438.Google Scholar
Wyckoff, S. (1982). ‘Overview of Comet Observations,’ in Wilkening, L.L. (ed.), Comets, University of Arizona Press, Tucson, pp. 355.Google Scholar
Yamamoto, T. (1982). ‘Evaluation of Infrared Line Emission From Constituent Molecules of Cometary Nuclei,’ Astron. Astrophys., 109, 326330.Google Scholar