Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T19:08:59.081Z Has data issue: false hasContentIssue false

The Composition of Comets1

Published online by Cambridge University Press:  12 April 2016

Dieter Krankowsky*
Affiliation:
Max-Planck-Institut für KernphysikP.O. Box 103 980, 6900 Heidelberg, FRG

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical composition of gases in the coma of Comet Halley obtained from in situ and remote observations is reviewed. Water vapor with an abundance of approximately 80% by number is the dominant parent gas. Carbon monoxide is the second most abundant molecule, with about one-seventh of the water abundance. The other expected parent gases—carbon dioxide, methane, and ammonia—contributed with at most a few percent to the coma gas. Molecular nitrogen is found to be a minor species, with an abundance of less than one percent. Formaldehyde is relatively abundant, with a few percent relative to water. Gas-phase isotope ratios of nitrogen, oxygen, and sulfur are found to agree with solar system values within experimental errors. Halley’s hydrogen isotope ratio is comparable to the values found in other solar system objects poor in hydrogen, but distinctly different from the protosolar nebula and objects that accreted hydrogen in gaseous form. Carbon in the cyanide radical is enriched by 35% in 13C compared to the bulk solar system value that indicates the presence of non-homogenized interstellar carbon in Halley. Volatiles released from grains contribute noticeably to the coma gas. Complex organic molecules, inferred from various observations as constituents of the dust grains, are believed to be the origin of the distributed CO source, CN, and other jet structures in the coma.

Type
Section V: The Cometary Coma
Copyright
Copyright © Kluwer 1991

Footnotes

1

This article is an updated version of a contribution by Krankowsky and Eberhardt to the book COMET HALLEY-Investigations, Results, and Interpretations, ed. J. Mason, Ellis Horwood Ltd., Chichester, England, 1990.

References

A’Hearn, M. F. (1988). Private communication; quoted in Wyckoff, et al. (1989).Google Scholar
A’Hearn, M. F., Dwek, E., and Tokunaga, A. T. (1984). Infrared photometry of comet Bowell and other comets. Astrophys. J. 282, 803806.Google Scholar
A’Hearn, M. F., and Feldman, P. D. (1984). S2: A clue to the origin of cometary ice? In Ices in the Solar System, eds. Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (Dordrecht: Reidel), 463471.Google Scholar
A’Hearn, M. F., Feldman, P. D., and Schleicher, D. G. (1983). The discovery of S2 in the coma of comet IRAS-Araki-Alcock 1983d. Astrophys. J. 274, L99L103.Google Scholar
A’Hearn, M. F., Hoban, S., Birch, P. V., Bowers, C., Martin, R., and Klinglesmith, D. A. (1986a). Cyanogen jets in comet Halley. Nature 324, 649651.Google Scholar
A’Hearn, M. F., Hoban, S., Birch, P. V., Bowers, C., Martin, R., and Klinglesmith, D. A. (1986b). Gaseous jets in comet P/Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 483486.Google Scholar
Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.-H., Schwenn, R., Rosenbauer, H., Shelley, E., Balsiger, H., and Geiss, J. (1987). Evidence for methane and ammonia in the coma of Comet Halley. Astron. Astrophys. 187, 505512.Google Scholar
Altenhoff, W. J., Batrla, W., Huchtmeier, W. K., Schmidt, J., Stumpf, P., and Walmsley, M. (1983). Radio observations of Comet 1983d. Astron. Astrophys. 125, L19-L22.Google Scholar
Anders, E. (1986). What can meteorites tell us about comets? ESA-SP 249, 3139.Google Scholar
Arpigny, C. (1989). Private communication; quoted in Magee-Sauer, et al. (1989).Google Scholar
Arpigny, C., Dossin, F., Woszczyk, A., Donn, B., Rahe, J., and Wyckoff, S. (1990). Atlas of cometary spectra. (Dordrecht: Kluwer Academic Publishers), in press.Google Scholar
Baas, F., Geballe, T. R., and Walther, D. M. (1986). Spectroscopy of the 3.4 micron emission feature in Comet Halley. Astrophys. J. Lett. 311, L97L101.CrossRefGoogle Scholar
Balsiger, H., Altwegg, K., Bühler, F., Geiss, J., Ghielmetti, A. G., Goldstein, B. E., Huntress, W. T., Ip, W.-H., Lazarus, A. J., Meier, A., Neugebauer, M., Rettemund, U., Rosenbauer, H., Schwenn, R., Sharp, R. D., Shelley, E. G., Ungstrup, E., and Young, D. T. (1986). Ion composition and dynamics at comet Halley. Nature 321, 330334.Google Scholar
Biermann, L., Giguere, P. T., and Huebner, W. F. (1982). A model of a comet coma with interstellar molecules in the nucleus. Astron. Astrophys. 108, 221226.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Despois, D., Forveille, T., Gérard, E., Schraml, J., and Thum, C. (1986). A search for parent molecules at millimeter wavelengths in comets Giacobini-Zinner 1984e and P/Halley 1982i. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 365367.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Despois, D., Forveille, T., Gérard, E., Schraml, J., and Thum, C. (1987). Molecular observations of Comets P/Giacobini-Zinner 1984e and P/Halley 1982i at millimeter wavelengths. Astron. Astrophys. 180, 253262.Google Scholar
Boyarchuk, A. A., Grinin, V. P., Sheikhet, A. I., and Zvereva, A. M. (1987). Pre- and post-perihelion Astron ultraviolet spectrophotometry of Comet Halley: A comparative analysis. Sov. Astron. Lett. 13, 9296.Google Scholar
Campins, H., Rieke, G. H., and Lebofsky, M. J. (1983). Ice in Comet Bowell. Nature 301, 405.Google Scholar
Clark, B., Mason, L. W., and Kissel, J. (1986). Systematics of the “CHON” and other light-element particle populations in Comet Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. III, 353358.Google Scholar
Combes, M., Moroz, V., Crifo, J. P., Bibring, J. P., Coron, N., Crovisier, J., Encrenaz, T., Sanko, N., Grigoriev, A., Bockelée-Morvan, D., Gispert, R., Emerich, C., Lamarre, J. M., Rocard, F., Krasnopolsky, V., and Owen, T. (1986). Detection of parent molecules in Comet Halley from the IKS-experiment. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 353358.Google Scholar
Combes, M., Moroz, V. I., Crovisier, J., Encranez, T., Bibring, J. P., Grigoriev, A. V., Sanho, N. F., Coron, N., Crifo, J. F., Gispert, R., Bockelée-Morvan, D., Nikolsky, Yu. V., Krasnopolsky, V. A., Owen, T., Emerich, C., Lamarre, J. M., and Rocard, F. (1988). The 2.5-12 μm spectrum of Comet Halley from the IKS-VEGA experiment. Icarus 76, 404436.Google Scholar
Combi, M. R. (1987). Sources of cometary radicals and their jets: Gases or grains. Icarus 71, 178191.Google Scholar
Combi, J. R., and Delsemme, A. H. (1980). Neutral cometary atmospheres 1. An average random walk model of photodissociation in comets. Astrophys. J. 237, 633640.Google Scholar
Cosmovici, C. B., and Ortolani, S. (1984). Formaldehyde in Comet IRAS-Araki-Alcock (1983d). Cosmogonical implications. In Ices in the Solar System, eds. Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (Dordrecht: Reidel), 473485.Google Scholar
Craven, J. D., and Frank, L. A. (1987). Atomic hydrogen production rates for Comet P/Halley from observations with Dynamics Explorer 1. Astron. Astrophys. 187, 351356.Google Scholar
Crifo, J. F. (1983). Visible and infrared emissions from volatile and refractory cometary dust. A new interpretation of Comet Kohoutek observations. In Cometary Exploration, ed. Gombosi, T., Hungarian, I., Acad. Sci II, 167176.Google Scholar
Crifo, J. F. (1989). Water clusters in the coma of Comet Halley and their effect on gas density, temperature, and velocity. Icarus, in press.Google Scholar
Crovisier, J. (1989). The photodissociation of water in cometary atmospheres. Astron. Astrophys. 213, 459464.Google Scholar
Crovisier, J., Despois, D., Gerard, E., Irvine, W. M., Kazes, I., Robinson, S., and Schloerb, F. P. (1981). A search for the 1.35-cm line of H2O in comets Kohler (1977 XIV) and Meier (1978 XXI). Astron. Astrophys. 97, 195198.Google Scholar
Crovisier, J., and Schloerb, F. P. (1990). The study of comets at radio wavelengths, (this book)Google Scholar
de Bergh, C. (1988). Private communication; quoted in Wyckoff et al. (1989a).Google Scholar
Danks, A.C., Encranez, T., Bouchet, P., Le Bertre, P., and Chalabaev, A. (1987). The spectrum of Comet P/Halley from 3.0 to 4.0 μm. Astron. Astrophys. 184, 329332.Google Scholar
Delsemme, A. H. (1988). The chemistry of comets. Phil. Trans. R. Soc. Lond. A 325, 509523.Google Scholar
Delsemme, A. H., and Swings, P. (1952). Hydrates de gaz dans les noyaux comètaires et les grains interstellaires. Ann. d’Astrophys. 15, 16.Google Scholar
Despois, D., Crovisier, J., Bockelée-Morvan, D., Schraml, J., Forveille, T., and Gérard, E. (1986). Observations of hydrogen cyanide in Comet Halley. Astron. Astrophys. 160, 1112.Google Scholar
Drapatz, S., Larson, H. P., and Davis, D. S. (1986). Search for methane in Comet Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 347352.Google Scholar
Eberhardt, P., Dolder, U., Schulte, W., Krankowsky, D., Lämmerzahl, P., Hoffman, J. H., Hodges, R. R., Berthelier, J. J., and Illiano, J. M. (1986b). The D/H ratio in water from Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 539541.Google Scholar
Eberhardt, P., Dolder, U., Schulte, W., Krankowsky, D., Lämmerzahl, P., Hoffman, J. H., Hodges, R. R., Berthelier, J. J., and Illiano, J. M. (1987b). The D/H ratio in water from Halley. Astron. Astrophy. 187, 435437.Google Scholar
Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J. J., Woweries, J., Stubbemannn, U., Hodges, R. R., Hoffman, J. H., and Illiano, J. M. (1986a). On the CO and N2 abundance in Comet Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 383386.Google Scholar
Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J. J., Woweries, J., Stubbemannn, U., Hodges, R. R., Hoffman, J. H., and Illiano, J. M. (1987a). On the CO and N2 abundance in Comet Halley. Astron. Astrophys. 187, 481484.Google Scholar
Encrenaz, T., d’Hendecourt, L., and Puget, J. L. (1988). On the interpretation of the 3.2-3.5 micron emission feature in the spectrum of Comet P/Halley: Abundances in the comet and in interstellar space. Astron. Astrophys. 207, 162173.Google Scholar
Fegley, B. Jr., and Prinn, R. G. (1989). Solar nebula chemistry: Implications for volatiles in the solar system. In The Formation and Evolution of Planetary Systems, eds. Weaver, H. A., Paresce, F., and Danly, L. (Cambridge: Cambridge University Press), 171212.Google Scholar
Feldman, P. D. (1978). A model of carbon production in a cometary coma. Astr. Astrophys. 70, 547553.Google Scholar
Feldman, P D. (1982). Ultraviolet spectroscopy of comae. In Comets, ed. Laurel Wilkening, L. (Tucson: University of Arizona), 461479.CrossRefGoogle Scholar
Feldman, P. D. (1990). Ultraviolet spectroscopy of comets, (this book) Feldman, P. D., A’Hearn, M. F., Festou, M. C, McFadden, L. A., Weaver, H. A., and Woods, T. N. (1986a). Is CO2 responsible for the outbursts of Comet Halley? Nature 324, 433436.Google Scholar
Feldman, P. D., and Brune, W. H. (1976). Carbon production in Comet West (1975n). Astrophys. J. 209, L145-L148.Google Scholar
Feldman, P. D., Festou, M.C., A’Hearn, M. F., Arpigny, C., Butterworth, P. S., Cosmovici, C. B., Danks, A. C., Gilmozzi, R., Jackson, W. M., McFadden, L. A., Patriarchi, P., Schleicher, D. G., Tozzi, G. P., Wallis, M. K., Weaver, H. A., and Woods, T. N. (1986b). IUE observations of Comet Halley: Evolution of the UV spectrum between September 1985 and July 1986. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 325328.Google Scholar
Feldman, P. D., Festou, M. C., A’Hearn, M. F., Arpigny, C., Butterworth, P. S., Cosmovici, C. B., Danks, A. C., Gilmozzi, R., Jackson, W. M., McFadden, L. A., Patriarchi, P., Schleicher, D. G., Tozzi, G. P., Wallis, M. K., Weaver, H. A., and Woods, T. N. (1987). IUE observations of Comet Halley: Evolution of the UV spectrum between September 1985 and July 1986. Astron. Astrophys. 187, 325328.Google Scholar
Festou, M. C. (1981). The density distribution of of neutral compounds in cometary atmospheres. Astron. Astrophys. 95, 6979.Google Scholar
Festou, M. C., Feldman, P. D., A’Hearn, M. F., Arpigny, C., Cosmovici, C. B., Danks, A. C., McFadden, L. A., Gilmozzi, R., Patriarchi, P., Tozzi, G. P., Wallis, M. K., and Weaver, H. A. (1986). IUE observations of Comet Halley during the VEGA and Giotto encounters. Nature 321, 361363.Google Scholar
Festou, M. C., Feldman, P. D., and Weaver, H. A. (1982). The ultraviolet bands of the CO2+ ion in comets. Astrophys. J. 256, 331.Google Scholar
Fowler, A. (1910). Investigations relating to the spectra of comets. Mon. Not. Roy. Astron. Soc. 70, 484496.Google Scholar
Geiss, J. (1987). Composition measurements and the history of cometary matter. Astron. Astrophys. 187, 859866.Google Scholar
Geiss, J. (1988). Composition in Halley’s Comet: Clues to origin and history of cometary matter. In Reviews in Modern Astronomy, Vol. 1, ed. Klare, G. (Berlin-Heidelberg: Springer), 127.Google Scholar
Greenberg, J. M. (1982). Laboratory dust experiments—tracing the composition of cometary dust. In Cometary Exploration, ed. Gombosi, T.I., Hungarian Acad. Sci. II, 2354.Google Scholar
Greenberg, J. M., Grim, R., and van IJzendoorn, L. (1986). Interstellar S2 in comets. In Asteroids, Comets, Meteors II, eds. Lagerkvist, C.-I., Lindblad, B. A., Lundstedt, H., and Rickman, H. (Uppsala: Uppsala University), 225227.Google Scholar
Hanner, M. (1984). Comet Cernis: Icy grains at last? Astrophys. J. 277, L75.Google Scholar
Hartmann, W. K., and Cruikshank, D. P. (1983). Systematics of ices among remote comets, asteroids, and satellites. Bull. Amer. Astron. Soc. 15, 808 (abstract).Google Scholar
Haser, L. (1957). Distribution d’intensité dans la tête d’une comète. Bull. Acad. Roy. Belgique, Classe de Sciences 43, 740750.Google Scholar
Haser, L. (1966). Calcul de distribution d’intensité relatif dans une tête comètaire. Mém. Soc. Roy. Liège, Ser. 5, 12, 233241.Google Scholar
Hollis, J. M., Brandt, J. C., Hobbs, R. W., Maran, S., and Feldman, P. D. (1981). Radio observations of Comet Bradfield (19791). Astrophys. J. 244, 355357.Google Scholar
Huebner, W. F. (1987). First polymer in space identified in Comet Halley. Science, 237 628630.Google Scholar
Huebner, W. F., and Carpenter, C. W. (1979). Solar Photo Rate Coefficients. Los Alamos Scientific Report No. LA-8085-MS.Google Scholar
Huebner, W. F., Snyder, L. E., and Buhl, D. (1974). HCN radio emission from Comet Kohoutek (1973f). Icarus 23, 580584.Google Scholar
Iben, I. Jr. (1975). Thermal pulses; p-capture, s-process nucleosynthesis; and convecting mixing in a star of intermediate mass. Astrophys. J. 196, 525547.Google Scholar
Ip, W.-H., Balsiger, H., Geiss, J., Goldstein, B. E., Kettmann, G., Lazarus, A., Meier, A. J., Rosenbauer, H., Schwenn, R., and Shelley, E. (1990). Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of Comet Halley. Ann. Geophys. 8, in press.Google Scholar
Jackson, W. M., Butterworth, P. S., and Ballard, D. (1986). The origin of CS in Comet IRAS-Araki-Alcock (1983d). Astrophys. J. 304, 515518.CrossRefGoogle Scholar
Jackson, W. M., Clark, T., and Donn, B. (1976). Radio detection of H2O in Comet Bradfield (1974b). In The Study of Comets, eds. Donn, B., Mumma, M., Jackson, W., A’Hearn, M., and Harrington, R. (Washington: NASA SP-393), 272280.Google Scholar
Jessberger, E. K. and Kissel, J. (1990). Chemical properties of cometary dust and and a note on carbon isotopes, (this book)Google Scholar
Kaneda, E., Ashihara, O., Shimizu, M., Takagi, M., and Hirao, K. (1986). Observation of Comet Halley by the ultraviolet imager of Suisei. Nature 321, 297299.Google Scholar
Kawara, K., Gregory, B., Yamamoto, T., and Shibai, H. (1988). Infrared spectroscopic observation of methane in Comet P/Halley. Astron. Astrophys. 207, 174181.Google Scholar
Kim, S. J., and A’Hearn, M. F. (1990). Sulfur compounds in comets. Icarus, in press.Google Scholar
Kim, S. J., A’Hearn, M. F., and Cochran, W. D. (1989). NH emissions in comets: Fluorescence vs. collisions. Icarus 77, 98108.Google Scholar
Kissel, J., Brownlee, D. E., Büchler, K., Clark, B. C., Fechtig, H., Grün, E., Hornung, K., Igenbergs, E. B., Jessberger, E. K., Krueger, F. R., Kuczera, H., McDonnell, J. A. M., Morfill, G. M., Rahe, J., Schwehm, G. H., Sekanina, Z., Utterback, N. G., Völk, H. J., and Zook, H. A. (1986). Composition of Comet Halley dust particles from Giotto observations. Nature 321, 336337.Google Scholar
Kitamura, Y. (1986). Axisymmetric dusty gas jets in the inner coma of a comet. Icarus 66, 241257.CrossRefGoogle Scholar
Kömle, N. I., and Ip, W.-H. (1986). Anisotropic non-stationary gas flow dynamics in the coma of Comet Halley. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 523527.Google Scholar
Korth, A., Richter, A. K., Loidl, A., Anderson, K. A., Carlson, C. W., Curtis, D. W., Lin, R. P., Reme, H., Sauvaud, J. A., d’Uston, C., Cotin, F., Cros, A., and Mendis, D. A. (1986). Mass spectra of heavy ions near Comet Halley. Nature 321, 335336.Google Scholar
Knacke, R. F., Brooke, T. Y., and Joyce, R. R. (1986). Observations of 3.2-3.6 micron emission features in Comet Halley. Astrophys. J. Lett. 310, L49-L53.Google Scholar
Krankowsky, D., and Eberhardt, P. (1990). Evidence for the composition of ices in the nucleus of Comet Halley. In COMET HALLEY- Investigations, Results, and Interpretations, ed. Mason, J., Ellis Horwood Ltd., Chichester, England, 1990, in press.Google Scholar
Krankowsky, D., Eberhardt, P., Meier, R., Schulte, W., Lämmerzahl, P., and Hodges, R. R. (1990). Formaldehyde in Halley derived from Giotto NMS measurements. Astron. Astrophys., in preparation.Google Scholar
Krankowsky, D., Lämmerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrmann, U., Schulte, W., Berthelier, J. J., Illiano, J. M., Hodges, R. R., and Hoffman, J. H. (1986). In situ gas and ion composition measurements at Comet Halley. Nature 321, 326329.Google Scholar
Krasnopolsky, V. A., Gogoshev, M., Moreels, G., Moroz, V. I., Krysko, A. A., Gogosheva, Ts., Palazov, K., Sargoichev, S., Clairmidi, J., Vincent, M., Bertaux, J. L., Blamont, J. E., Troshin, V. S., and Valnicek, B. (1986). Spectroscopic study of Comet Halley by the VEGA 2 three-channel spectrometer. Nature 321, 269271.Google Scholar
Lacy, J. H., Baas, F., Allamandola, L. J., Persson, S. E., McGregor, P. J., Lonsdale, C. J., Geballe, T. R., and van de Bult, C. E. P. (1984). 4.6-micron absorption features due to solid phase CO and cyano group molecules toward compact infrared source. Astrophys. J. 276, 533543.Google Scholar
Léger, A. (1983). Does CO condense on dust in molecular clouds? Astron. Astrophys. 123, 271278.Google Scholar
Lewis, J. S. (1972). Low temperature condensation in the solar nebula. Icarus 16, 241252.Google Scholar
Lewis, J. S., and Prinn, R. (1980). Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238, 357364.Google Scholar
Lämmerzahl, P., Krankowsky, D., Hodges, R.R., Stubbemann, U., Woweries, J., Herrwerth, I., Bethelier, J. J., Iliano, J. M., Eberhardt, P., Dolder, U., Schulte, W., and Hoffman, J. H. (1987). Expansion velocity and temperature of gas and ions measured in the coma of Comet Halley. Astron. Astrophys. 187, 169173.Google Scholar
Magee-Sauer, K., Scherb, F., Roesler, F. L., and Harlander, J. (1988). Fabry-Perot observations of NH2 emissions from Comet Halley. Bull. Am. Astron. Soc. 20(3), 827.Google Scholar
Magee-Sauer, K., Scherb, F., Roesler, F. L., Harlander, J., and Lutz, B. L. (1989). Fabry-Perot observations of the NH2 emission from Comet Halley. Icarus 82, 5060.CrossRefGoogle Scholar
Marconi, M. L., and Mendis, D. A. (1988). On the ammonia abundance in the coma of Halley’s Comet. Astrophys. J. 330, 513517.Google Scholar
Mazets, E. P., Aptekar, R. L., Golenetskii, S. V., Guryan, Yu. A., Dyachkov, A. V., Ilyinskii, V. N., Panov, V. N., Petrov, G. G., Savvin, A. V., Sagdeev, R. Z., Sokolov, I. A., Khavenson, N. G., Shapiro, V. D., and Shevchenko, V. I. (1986). Comet Halley dust environment from SP-2 detector measurements. Nature 321, 276278.Google Scholar
McDonnell, J. A. M., Alexander, W. M., Burton, W. M., Bussoletti, E., Evans, G. C., Evans, S. T., Firth, J. G., Grard, R. J. L., Green, S. F., Grün, E., Hanner, M. S., Hughes, D. W., Igenbergs, E., Kissel, J., Kuczera, H., Lindblad, B. A., Langevin, Y., Mandeville, J.-C, Nappo, S., Pankiewicz, G. S. A., Perry, C. H., Schwehm, G. H., Sekanina, Z., Stevenson, T. J., Turner, R. F., Weishaupt, U., Wallis, M. K., and Zarnecki, J. C. (1987). The dust distribution within the inner coma of Comet P/Halley 1982i: Encounter by Giotto’s impact detectors. Astron. Astrophys. 187, 719741.Google Scholar
Millis, R. L., and Schleicher, D. G. (1986). Rotational period of Comet Halley. Nature 324, 646649.Google Scholar
Ming, T., Anders, E., Hoppe, P., and Zinner, E. (1989). Meteoritic silicon carbide and its stellar sources; Implications for galactic chemical evolution. Nature 339, 351354.Google Scholar
Mitchell, D. L., Lin, R. P., Anderson, K. A., Carlson, C. W., Curtis, D. W., Korth, A., Richter, A. K., Reme, H., Sauvaud, J. A., d’Uston, C., and Mendis, D. A. (1986). Derivation of heavy (10–210 AMU) ion composition and flow parameters for the Giotto PICCA instrument. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 203205.Google Scholar
Mitchell, D. L., Lin, R. P., Anderson, K. A., Carlson, C. W., Curtis, D. W., Korth, A., Reme, H., Sauvaud, J. A., d’Uston, C., and Mendis, D. A. (1987). Evidence for chain molecules enriched in carbon, hydrogen, and oxygen in Comet Halley. Science 237, 626628.Google Scholar
Moroz, V. I., Combes, M., Bibring, J. P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J. F., Sanko, N., Grigoriev, A. V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Yu. V., Emerich, C., Lamarre, J. M., Rocard, F., Krasnopolsky, V. A., and Owen, T. (1987). Detection of parent molecules in Comet Halley from the IKS-VEGA experiment. Astron. Astrophys. 187, 513518.Google Scholar
Mumma, M. J., and Reuter, D. C. (1989). On the identification of formaldehyde in Halley’s Comet. Astrophys. J. 344, 940948.Google Scholar
Mumma, M. J., Weaver, H. A., Larson, H. P., Davis, D. S., and Williams, M. (1986). Detection of water vapor in Halley’s Comet. Science 232, 15231528.Google Scholar
Prasad, S.S., and Huntress, W. T. Jr. (1980). A model for gas phase chemistry in interstellar clouds: I. The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. 43, 135.Google Scholar
Prialnik, D., and Bar-Nun, A. (1987). On the evolution and activity of cometary nuclei. Astrophys. J. 313, 893905.Google Scholar
Prinn, R. G., and Fegley, B. Jr. (1989). Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. In Planetary and Satellite Atmospheres: Origin and Evolution (Tucson: University of Arizona Press), 78136.Google Scholar
Sagdeev, R. Z., Evlanov, M. N., Fomenkova, M. N., Prilutskii, O. F., and Zubkov, B. V. (1989). Small-size dust particles near Halley’s Comet. Adv. Space Res. 9(3), 263267.Google Scholar
Schleicher, D. G., A’Hearn, M. F., and the NASA and ESA IUE teams for comet Halley (1986). Comets P/Halley and P/Giacobini-Zinner at high dispersion. Proc. IUE conference (London).Google Scholar
Schloerb, F. P., Kinzel, W. M., Swade, D. A., and Irvine, W. M. (1986). HCN production from Comet Halley. Astrophys. J. 310, L55L60.Google Scholar
Schloerb, F. P., Kinzel, W. M., Swade, D. A., and Irvine, W. M. (1987). Observations of HCN in Comet P/Halley. Astron. Astrophys. 187, 475480.Google Scholar
Smith, A. M., Stecher, T. P., and Casswell, L. (1980). Production of carbon, sulfur and CS in Comet West. Astrophys. J. 242, 402410.Google Scholar
Snyder, L. E., Buhl, D., Zuckerman, B., and Palmer, P. (1969). Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22, 679681.Google Scholar
Snyder, L. E., Palmer, P., and de Pater, I. (1989). Radio detection of formaldehyde emission from Comet Halley. Astron. J. 97(1), 246253.Google Scholar
Snyder, L. E., Palmer, P., and de Pater, I. (1990). Observation of formaldehyde in Comet Machholz 1988J. Icarus, in press.Google Scholar
Stewart, A. I. F. (1987). Pioneer Venus measurements of H, O, and C production in Comet P/Halley near perihelion. Astron. Astrophys. 187, 369374.Google Scholar
Swings, P., and Page, T. L. (1948). The spectrum of Comet (1947n). Astrophys. J. 108, 526536.Google Scholar
Tegler, S., and Wyckoff, S. (1989). NH2 fluorescence efficiencies and the NH3 abundance in Comet Halley. Astrophys. J. 343, 445449.Google Scholar
Ulich, B. L., and Conklin, E. J. (1974). Detection of methyl cyanide in Comet Kohoutek. Nature 248, 121122.Google Scholar
Vaisberg, O., Smirnov, V., and Omelchenko, A. (1986). Spatial distribution of low-mass dust particles (m < 10-10 g) in Comet Halley coma. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. II, 1723.Google Scholar
Wallis, M. K., and Krishna Swamy, K. S. (1987). Some diatomic molecules from Comet P/Halley’s UV spectra near spacecraft flybys. Astron. Astrophys. 187, 329332.Google Scholar
Weaver, H. A. (1981). Ultraviolet spectra of comets observed with the International Ultraviolet Explorer satellite. Ph.D. thesis, John Hopkins University.Google Scholar
Weaver, H. A., Mumma, M. J., Larson, H. P., and Davis, D. S. (1986). Airborne infrared investigation of water in the coma of Halley’s Comet. Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, 329334.Google Scholar
Weaver, H. A., Mumma, M. J., and Larson, H. P. (1990). Infrared spectroscopy of cometary parent molecules, (this book)Google Scholar
Whipple, F. L. (1989). Comets in the space age. Astrophys. J. 341, 115.Google Scholar
Winnberg, A., Ekelund, L., and Ekelund, A. (1987). Detection of HCN in Comet P/Halley. Astron. Astrophys. 172, 335341.Google Scholar
Woods, T. N., Feldman, P. D., Dymond, K. F., and Sahnow, D. J. (1986). Rocket ultraviolet spectroscopy of Comet Halley and abundance of carbon monoxide and carbon. Nature 324, 436438.Google Scholar
Wopenka, B., Virag, A., Zinner, E., Amari, S., Lewis, R. S., and Anders, E. (1989). Isotopic and optical properties of large individual silicon carbide crystals from the Murchison chondrite. Meteoritics 24, 342.Google Scholar
Wrickramasinghe, D. T., and Allen, D. A. (1986). Discovery of organic grains in Comet Halley. Nature 323, 4446.Google Scholar
Wurm, K. (1943). Die Natur der Kometen. Mitt. Ham. Sternwarte 8, No. 51.Google Scholar
Wyckoff, S., Lindholm, E., Wehinger, P. A., Peterson, B. A., Zucconi, J.-M., and Festou, M. C. (1989a). The 12C/13C abundance ratio in Comet Halley. Astrophys. J. 339, 488500.Google Scholar
Wyckoff, S., Tegler, S., Wehinger, P. A., Spinrad, H., and Belton, M. J. S. (1988). Abundances in Comet Halley at the time of the spacecraft encounters. Astrophys. J. 325, 927938.Google Scholar
Wyckoff, S., Tegler, S., and Engel, L. (1989b). Ammonia abundances in comets. Adv. Space Res. 9(3), 169176.Google Scholar
Wyckoff, S., and Theobald, J. (1989). Molecular ions in comets. Adv. Space Res. 9(3), 157161.Google Scholar
Wyckoff, S., and Wehinger, P. A. (1976). Molecular ions in comet tails. Astrophys. J. 204, 604615.Google Scholar
Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983). The chemical composition and thermal history of the ices of a cometary nucleus. Astron. Astrophys. 122, 171176.Google Scholar
Zinner, E., Tang, M., and Anders, E. (1989). Interstellar SiC in the Murchison and Murray meteorites: Isotopic composition of Ne, Xe, Si, C, and N. Geochim. Cosmochim. Acta 53, 32733290.Google Scholar
Zinner, E., and Wopenka, B. (1990). Interstellar graphite and other carbonaceous grains from the Murchison meteorite: Structure, composition, and isotopes of C, N, and Ne. Lunar and Planet. Sci. XXI (Houston: Lunar and Planetary Institute), 1379 (abstract).Google Scholar