No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The interaction of an intense flux tube, extending vertically through the photosphere, with p-modes in the ambient medium is modelled by solving the time dependent MHD equations in the thin flux tube approximation. It is found that a resonant interaction can occur, which leads to the excitation of flux tube oscillations with large amplitudes. The resonance is not as sharp as in the case of an unstratified atmosphere, but is broadened by a factor proportional to H−2, where H is the local pressure scale height. In addition, the inclusion of radiative transport leads to a decrease in the amplitude of the oscillations, but does not qualitatively change the nature of the interaction.