Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T17:30:33.240Z Has data issue: false hasContentIssue false

The Equation of State

Published online by Cambridge University Press:  12 April 2016

Werner Däppen*
Affiliation:
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1342, U.S.A.andInstitut für Astronomie, Türkenschanzstr. 17, 1180 Vienna, Austria

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are two basic approaches to the equation of state for stellar envelopes and interiors. The traditional method chooses the so-called “chemical picture”, in which the notion of atoms is maintained despite the plasma environment. A mixture of atoms, molecules, ions, electrons and nuclei is considered, and the occurring ionization and dissociation reactions (thus the name chemical picture) are treated according to the entropy-maximum (or free-energy-minimum) principle. The alternative method is based on the so-called “physical picture”, where only fundamental particles (electrons, nuclei) explicitly enter. Through the means of activity expansions, the problems of plasma physics and statistical mechanics are treated simultaneously and on the same footing. For helio- and asteroseismology, an accurate and precise equation of state is essential. Progress towards a better equation of state can be made in several ways: purely theoretical efforts, checks with experiments, including astrophysical data, and comparisons between different theoretical formalisms. Comparisons are useful to assess the domain of temperature and density where the theoretical complications matter, and to determine the diagnostic potential of astrophysical observables for equation of state issues.

Type
III. Input physics for stellar structure
Copyright
Copyright © Astronomical Society of the Pacific 1993

References

Chabrier, G.: 1990, J. de Physique (France) 51, 1607 Google Scholar
Christensen-Dalsgaard, J.: 1991, In Lecture Notes in Physics, Vol. 388: Challenges to Theories of the Structure of Moderate-mass Stars, eds Gough, D.O. & Toomre, J., Springer, Heidelberg, p. 11 – 36 Google Scholar
Christensen-Dalsgaard, J. & Däppen, W.: 1992, Astron. Astrophys. Review submittedGoogle Scholar
Christensen-Dalsgaard, J., Däppen, W. & Lebreton, Y.: 1988, Nature 336, 634 – 638 Google Scholar
Däppen, W.: 1990, in Lecture Notes in Physics, Vol. 367: Progress of Seismology of the Sun and Stars, eds. Osaki, Y. & Shibahashi, H., Springer, Berlin, p. 33– 40 CrossRefGoogle Scholar
Däppen, W.: 1992, in Astrophysical Opacities, eds. Mendoza, C. & Zeippen, C. (Revista Mexicana de Astronomía y Astrofísica) 141 – 149 Google Scholar
Däppen, W., Anderson, L.S. & Mihalas, D.: 1987, Astrophys. J. 319, 195 – 206 Google Scholar
Däppen, W., Keady, J. & Rogers, F.: 1991, in Solar Interior and Atmosphere, eds Cox, A.N., Livingston, W.C. & Matthews, M., Space Science Series, University of Arizona Press, Tucson, p. 112 – 139 Google Scholar
Däppen, W., Lebreton, Y. & Rogers, F.: 1990, Solar Physics 128, 35 – 47 Google Scholar
Däppen, W., Mihalas, D., Hummer, D.G. & Mihalas, B.W.: 1988, Astrophys. J. 332, 261 – 270 Google Scholar
Ebeling, W., Kraeft, W.D. & Kremp, D.: 1976, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Akademie Verlag, Berlin, DDRGoogle Scholar
Ebeling, W., Kraeft, W.D., Kremp, D. & Röpke, G.: 1985, Astrophys. J. 290 24 – 27 Google Scholar
Ebeling, W., Förster, A., Fortov, V.E., Gryaznov, V.K. & Polishchuk, A.Ya.: 1991, Thermodynamic Properties of Hot Dense Plasmas, Teubner, Stuttgart, Germany Google Scholar
Eggleton, P.P., Faulkner, J. & Flannery, B.P.: 1973, Astron. Astrophys. 23, 325 – 330 Google Scholar
Eliezer, S., Ghatak, A. & Hora, H.: 1986, An introduction to equations of state: theory and applications, Cambridge University Press Google Scholar
Gough, D.O.: 1984a, Mem. Soc. Astron. Ital. 55, 13 – 35 Google Scholar
Graboske, H.C., Harwood, D.J. & Rogers, F.J.: 1969, Phys. Rev. A186, 210 Google Scholar
Huang, K.: 1963, Statistical Mechanics, John Wiley, New York, Chapt. 14Google Scholar
Hummer, D.G. & Mihalas, D.: 1988, Astrophys. J. 331, 794 – 814 Google Scholar
Iglesias, C.A., & Rogers, F.J.: 1991, Astrophys. J. 371, 408 – 417 Google Scholar
Iglesias, C.A. & Rogers, F.J.: 1992, in Astrophysical Opacities, eds. Mendoza, C. & Zeippen, C. (Revista Mexicana de Astronomía y Astrofísica) 161 – 170 Google Scholar
Iglesias, C.A., Rogers, F.J. & Wilson, B.G.: 1987, Astrophys. J. 322, L45 Google Scholar
Kosovichev, A.G., Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W.A., Gough, D.O., & Thompson, M.J.: 1992, Mon. Not. R. astr. Soc., in the pressGoogle Scholar
Kraeft, W.D., Kremp, D., Ebeling, W. & Röpke, G.: 1986, Quantum Statistics of Charged Particle Systems, Plenum, New York Google Scholar
Krasnikov, Yu.G.: 1977, Zh. Eksper. teoret. Fiz. 73, 516 (English translation: Soviet Phys. - JETP 46, 270 – 274; author’s name misspelt as “Karsnikov”)Google Scholar
Mayer, J.E.: 1950, J. Chem. Phys. 18 1426 – 1436 Google Scholar
Mihalas, D., Däppen, W. & Hummer, D.G.: 1988, Astrophys. J. 331, 815 – 825 Google Scholar
Reichl, L.E.: 1980, A Modern Course in Statistical Physics, University of Texas Press, Austin Google Scholar
Rogers, F.J.: 1977, Phys. Lett. 61A, 358 – 360 Google Scholar
Rogers, F.J.: 1981, Phys. Rev. A24, 1531 – 1543 Google Scholar
Rogers, F.J.: 1986, Astrophys. J. 310, 723 – 728 Google Scholar
Rouse, C.A.: 1983, Astrophys. J. 272 377 – 379 Google Scholar
Saumon, D. & Chabrier, G.: 1991, Phys. Rev A44, 5122 Google Scholar
Saumon, D. & Chabrier, G.: 1992, Phys. Rev A, (in press)Google Scholar
Seaton, M.: 1987, J. Phys. B: Atom. Molec. Phys. 20, 6363 – 6378 Google Scholar
Seaton, M.: 1990, J. Phys. B: Atom. Molec. Phys. 23, 3255 – 3296 Google Scholar
Seaton, M.J.: 1992, in Astrophysical Opacities, eds. Mendoza, C. & Zeippen, C. (Revista Mexicana de Astronomía y Astrofísica) 180 Google Scholar
Wiese, W.L., Kelleher, D.E. & Paquette, D.R.: 1972, Phys. Rev. A6 1132 – 1153 Google Scholar