Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:55:40.184Z Has data issue: false hasContentIssue false

Infrared Techniques for Comet Observations

Published online by Cambridge University Press:  12 April 2016

Martha S. Hanner
Affiliation:
Jet Propulsion Laboratory California, Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109
Alan T. Tokunaga
Affiliation:
Institute for Astronomy , University of Hawaii 2680 Woodlawn Drive Honolulu, HI 96822

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The infrared spectral region (1–1000 μm) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2–dimensional arrays leading to infrared cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

Type
Section I: Observing Techniques and Interpretation
Copyright
Copyright © Kluwer 1991

References

A’Hearn, M.F. (1988). ‘Observations of cometary nuclei,’ Ann. Rev. Earth Planetary Sci. 16, 273293.Google Scholar
A’Hearn, M.F., Dwek, E., and Tokunaga, A.T. (1984). ‘Infrared photometry of Comet Bowell and other comets.’ Astrophys. J. 282, 803 Google Scholar
Aitken, D.K., and Roche, P.F. (1982). ‘8-13 μm spectrophotometry of compact planetary nebulae and emission line objects.’ Mon. Not. R. Astr. Soc. 200, 217 Google Scholar
Allen, D.A., and Cragg, T.A. (1983). ‘The AAO JHKL’ photometric standards.’ MNRAS 203, 777783.Google Scholar
Becklin, E.E., and Westphal, J.A. (1966). ‘Infrared Observations of Comet 1965f.’ Astrophys. J. 145, 445.Google Scholar
Beichman, C., et al. (1985). ‘IRAS Explanatory Suppl.ement,’ Chapter VI.Google Scholar
Blackwell, D.E., Leggett, S.K., Petford, A.D., Mountain, C.M., and Selby, M.J. (1983). ‘Absolute calibration of the infrared flux from Vega at 1.24, 2.20, 3.76, and 4.6 μm by comparison with a standard furnace.’ MNRAS 205, 897905.Google Scholar
Bockelée-Morvan, D., and Crovisier, J. (1989). ‘The nature of the 2.8-μm emission feature in cometary spectra.’ Astron. Astrophys. 216, 278 Google Scholar
Booth, A.J., Selby, M.J., Blackwell, D.E., Petford, A.D., and Arribas, S. (1989). ‘Determination of the absolute flux from Vega at 2.25 μm.’ Astron. Astrophys. 218, 167 Google Scholar
Bregman, J.D., Campins, H., Witteborn, F.C., Wooden, D.H., Rank, D.M., Aflamándola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers.’ Astron. Astrophys. 187, 616 Google Scholar
Brooke, T.Y., Knacke, R.F., and Joyce, R.R. (1987). ‘The near-infrared polarization and color of comet P/Halley, Astron. Astrophys. 187, 621 Google Scholar
Campins, H., Joy, M., Harvey, P.M., Lester, D.F., and Ellis, H.B. (1987). ‘Airborne photometry of Comet Halley from 40 to 160 microns.’ Astron. Astrophys. 187, 632 Google Scholar
Campins, H., Rieke, G.H., and Lebofsky, M.J. (1985). ‘Absolute calibration of photometry at 1 through 5 μm.’ Astron. J. 90, 896.CrossRefGoogle Scholar
Campins, H., Bregmaii, J.D., Witteborn, F.C., Wooden, D.H., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne spectrophotometry of cornet Halley from 5 to 9 microns.’ In Proc. 20th ESLAB Symp. on the Exploration of Halley’s Comet (Battrick, B., Rolfe, E.J., and Reinhard, R., Eds.), ESA SP-250, Vol. 2, p. 121.Google Scholar
Campins, H., and Tokunaga, A., (1988). ‘Infrared observations of the dust coma.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (Hanner, M.S., Ed.), p. 1.Google Scholar
Campins, H., Rieke, M.J., and Rieke, G.H. (1989). ‘An infrared color gradient in the inner coma of Comet Halley.’ Icarus 78, 54 CrossRefGoogle Scholar
Campins, H., and Ryan, E.V. (1989). ‘The identification of crystalline olivine in cometary silicates.’ Astrophys. J. 341, 1059.Google Scholar
Carter, B.S. (1990). ‘Southern JHKL standards.’ MNRAS 242, 15.Google Scholar
Combes, M., et al. (1986). ‘Infrared sounding of comet Halley from VEGA 1.’ Nature 321, 266 Google Scholar
Crovisier, J. (1989). ‘Infrared cometary spectroscopy.’ In 22nd ESLAB Symp. on Infrared Spectroscopy in Astronomy, ESA SP-290, in press.Google Scholar
Drapatz, S., Larson, H.p., and Davis, D.S. (1987). ‘Search for methane in comet P/Halley.’ Astron. Astrophys. 187, 497 Google Scholar
Dreiling, L.A., and Bell, R.A. (1980). ‘The chemical composition, gravity and temperature of Vega.’ Astrophys. J. 241, 736 CrossRefGoogle Scholar
Elias, J.H., Frogel, J.A., Matthews, K., and Neugebauer, G. (1982). ‘Infrared standard stars.’ Astron. J. 87, 1029.Google Scholar
Elias, J.H., Frogel, J.A., Hyland, A.R., and Jones, T.J. (1983). ‘Comparison of the Mt. Stromlo/AAO. and Cal Tech/Tololo infrared photometric systems.’ Astron. J. 88, 1027.Google Scholar
Engels, D., Sherwood, W.A., Wamsteker, W., and Schultz, G.V. (1981). ‘Infrared observations of southern bright stars.’ Astron. Astrophys. Suppl. Ser. 45, 5 Google Scholar
Gehrz, R.D. Grasdalen, G.L., and Hackwell, J.A. (1987). ‘Infrared astronomy.’ In Encyclopedia of Physical Science and Technology 2, 53 Google Scholar
Gehrz, R.D., Hackwell, J.A., and Jones, T.W. (1974). ‘Infrared observations of Be stars from 2.3 to 19.5 microns.’ Astrophys. J. 191, 675 Google Scholar
Gezari, D.Y., Folz, W.C., Woods, L.A., and Woolridge, J.B. (1988). ‘A 58 x 62 pixel Si:Ga array camera for 5-14 μm astronomical imaging.’ Proc. SPIE. 973, in press.Google Scholar
Gillett, F.C., Dereniak, E.L., and Joyce, R.R. (1977). ‘Detectors for infrared astronomy.’ Opt. Engr. 16, 544 Google Scholar
Gillett, F.C., Low, F.J., and Stein, W.A. (1968). ‘Stellar spectra from 2.8-14 microns.’ Astrophys. J. 154, 677 CrossRefGoogle Scholar
Glaccum, W., Moseley, S.U., Campins, H., and Loewenstein, R.F. (1987). ‘Airborne spectropho tometry of P/IIalley from 20 to 65 microns.’ Astron Astrophys. 187, 635 Google Scholar
Glass, I.S. (1974). ‘JHKL photometry of 145 southern stars.’ Mon. Not. Astr. Soc. S. Africa 33, 53.Google Scholar
Grasdalen, G.L., Gehrz, R.D., Hackwell, J.A., and Freedman, R. (1985). ‘20-micron transparency and atmospheric water vapor at the Wyoming infrared observatory.’ Pub. Astron. Soc. Pac. 97, 1013.Google Scholar
Hackwell, J.A. (1971). ‘Emission spectrum of comet Bennett.’ Observatory 91, 33 Google Scholar
Hall, D.N.B., Aikens, R.S., Joyce, R., and McCurnin, T.W., (1975). ‘Johnson noise limited opera tion of photovoltaic InSb detectors.’ App. Optics 14, 450.Google Scholar
Hammel, H.B., Telesco, C.M., Campins, H., Decher, R., Storrs, A.D., and Cruikshank, D.P. (1987). ’Albedo maps of comets P/Halley and P/Giacobini-Zinner.’ Astron. Astrophys. 187, 665 Google Scholar
Hanner, M.S. (1984). ‘A comparison of the dust properties in recent periodic comets.’ Adv. Space Res., 4, (9), 189.Google Scholar
Hanner, M.S., Tokunaga, A.T., Veeder, G.J., and A’Hearn, M.F. (1984). ‘Infrared photometry of the dust in comets.’ Astron. J. 89, 162 Google Scholar
Hanner, M.S., Kupferman, P.N., Bailey, G., and Zarnecki, J.C. (1987). ‘Infrared imaging with JPL’s linear array camera.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, P. 205.Google Scholar
Hanner, M.S., Ed. (1988). ‘Infrared observations of Comets Halley and Wilson and properties of the grains,’ NASA Conference Publ. 3004.Google Scholar
Hayward, T.L., and Grasdalen, G.L. (1987). ‘Infrared images of comets. I. P./Giacobini-Zinner (1985e).’ Astron. J. 94, 1339.Google Scholar
Hayward, T.L., Grasdalen, G.L., and Green, S.F., (1988). ‘An albedo map of P/Halley on 13 March 1986.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (Hanner, M.S., Ed.), p. 151.Google Scholar
Hayes, D.S. (1985). ‘Stellar absolute fluxes and energy distributions from 0.32 to 4.0 μm.’ In IAU Symp. Ill, Calibration of Fundamental Stellar Quantities (Hayes, D.S., Pasinetti, L.E., and Philip, A.G. D., Eds.), Reidel, Dordrecht, p. 225.Google Scholar
Herter, T., Campins, H., and Gull, G.E. (1987). ‘Airborne spectrophotometry of P/IIalley from 16 to 30 microns.’ Astron. Astrophys. 187, 629.Google Scholar
Johnson, H.L. (1966). ‘Astronomical measurements in the infrared,’ Ann. Rev. Astron. Ap. 193.Google Scholar
Johnson, H.L. (1965). ‘The absolute calibration of the Arizona photometry,’ Comm. Lunar Plan. Lab 3, 73.Google Scholar
Johnson, H.L. (1965). ‘Interstellar extinction in the galaxy,’ Astrophys. J. 141, 923.Google Scholar
Johnson, H.L., et al. (1966). Comm. Lunar Plan. Lab 4, 99 Google Scholar
Jones, T.J., and Hyland, A.R. (1982). ‘Multiaperture JHK photometry of the globular clusters in the Fornax dwarf spheroidal galaxies.’ Mon. Not. Roy. Astr. Soc. 200, 509 Google Scholar
Joyce, R. (1989). ‘Availability of KPNO IR spectrometer (CRSP).’ NOAO Newsletter No. 17, p. 22.Google Scholar
King, I. (1952). ‘A note on the concept of effective wavelength.’ Astrophys. J. 115, 580 Google Scholar
Koornneef, J. (1983). ‘Near infrared photometry I.’ Astron. Astrophys. Suppl. Ser. 51, 489 Google Scholar
Koornneef, J. (1983). ‘Near infrared photometry II.’ Astron. Astrophys. 128, 8493.Google Scholar
Krisciunas, K., Sinton, W., Tholen, D., Tokunaga, A., Golisch, W., Griep, D., Kaminski, C., Impey, C., and Christian, C.. (1987). ‘Atmospheric extinction and night sky brightness at Mauna Kea.’ Pub. Astron. Soc. Pac. 99, 887 Google Scholar
Kurucz, R.L. (1979). ‘Model atmospheres for G, F, A, B and O stars’. Ap.J. Suppl. 40, 1 Google Scholar
Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1989). ‘Airborne infrared spectroscopy of comet Wilson (1986I) and comparisons with comet Halley.’ Astrophys. J., submitted.Google Scholar
Lester, D.F., Harvey, P.M., and Carr, J. (1988). ‘Properties of the gas and stellar content of the superluminous galaxy NGC 6240.’ Astrophys. J. 329, 641 Google Scholar
Lockwood, G.W., and Thompson, D.T. (1986). ‘Atmospheric extinction - the ordinary and volcanically induced variations, 1972-1985.’ Astron. J. 92, 976 Google Scholar
Low, F.J. (1961). ‘Low-temperature germanium bolometer.’ J. Opt. Soc. Am. 51, 1300.Google Scholar
Low, F.J., and Rieke, G.H. (1974). ‘The instrumentation and techniques of infrared photometry.’ In Methods of Experimental Physics, Vol. 12 (Carelton, N., Ed.), Academic Press, N.Y., pp. 415452.Google Scholar
Manduca, A., and Bell, R.A. (1979). ‘Atmospheric extinction in the near-infrared.’ Pub. Astron. Soc. Pac. 91, 848 Google Scholar
Merrill, K.M. (1974). ‘8-13 μm spectrophotometry of comet Kohoutek.’ Icarus 23, 566 Google Scholar
Moorwood, A.F.M. (1987). ‘IRSPEC.: Design, performance and first scientific results.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Univ. of Hawaii, Honolulu, P. 379.Google Scholar
Moroz, V.I., et al. (1987). ‘Detection of parent molecules in comet P/Halley from the IKS-Vega experiment.’ Astron. Astrophys. 187, 513 Google Scholar
Morrison, D., and Lebofsky, L. (1979). ‘Radiometry of asteriods.’ In Asteroids (Gehrels, T., Ed.), Univ. Arizona Press, Tucson, P. 184.Google Scholar
Mountain, C.M., Leggett, S.K., Selby, M.J., Blackwell, D.E., and Petford, A.D. (1985). ‘Measure ment of the absolute flux from Vega at 4.92 μm.’ Astron. Astrophys. 151, 399402.Google Scholar
Mumma, M.J., Weaver, H.A., Larson, H.P., Davis, D.S., and Williams, M. (1986). ‘Detection of water vapor in Halley’s comet.’ Science 232, 1523.Google Scholar
Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1988). ‘Measurements of the ortho-para ratio and the nuclear spin temperature of water vapor in comets Halley and Wilson (1986I) and implications for their origin and evolution.’ BAAS 20, 826; Proc. Workshop on Formation and Evolution of Planetary Systems, STScI, May 9-11, 1988.Google Scholar
Neckel, H., and Labs, D. (1981). ‘Improved data of solar spectral irradiance from 0.33 to 1.25 μm.’ Solar Phys. 74, 231 Google Scholar
Ney, E.P. (1974). ‘Multiband photometry of comets Kohoutek, Bennett, Bradfield, and Encke.’ Icarus, 23, 551 Google Scholar
Ney, E.P. (1982). ‘Optical and infrared observations of comets in the range 0.5 μm to 20 μm.’ In Comets (Wilkening, L.L., Ed.), Univ. Arizona Press, Tucson, P. 323.Google Scholar
Rieke, G.H., Lebofsky, M.J., and Low, F.J. (1985). ‘An absolute photometric system at 10 and 20 μm.’ Astron. J. 90, 900 Google Scholar
Ridgway, S.T., and Hinkle, K.H. (1988). ‘The impact of array detectors on high resolution infrared spectroscopy.’ In The Impact of Very High S/N Spectroscopy on Stellar Physics (Strobel, G. Cayrel de and Spite, M., Eds.), p. 61.Google Scholar
Rode, J.P., Blackwell, J.D., Blessinger, M.A., and Vural, K. (1987). ‘SWIR HgCdTe focal plane arrays for astronomy.’ In Infrared Astronomy with Arrays (Wynn-Williams, C.G. and Becklin, E.E., Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, P. 13.Google Scholar
Schnopper, H.W., and Thompson, R.I. (1974). ‘Fourier spectrometers.’ In Methods of Experimen tal Physics, Vol. 12, Part A (Carleton, N., Ed.), Academic Press, N.Y., p. 491.Google Scholar
Serkowski, K. (1974). ‘Polarization techniques.’ In Methods of Experimental Physics, 12 (Carleton, N., Ed.) Academic Press, N.Y., p. 361.Google Scholar
Simpson, J.P., Cuzzi, J.N., Erickson, E.F., Strecker, D.W., and Tokunaga, A.T. (1981). ‘Mars: Far-infrared spectra and thermal emission models.’ Icarus 48, 230245.Google Scholar
Shure, M., Nagata, T.M., Tokunaga, A.T., Forrest, W.J., Pipher, J.L., and Woodward, C.E. (1989). ’Ground-based infrared imaging of comet Halley.’ In preparation.Google Scholar
Sinton, W.M., and Tittemore, W.C. (1984). ‘Photometric standard stars for L’ and M filter bands.’ Astron. J. 89, 1366.Google Scholar
Stacey, G.J., Lugten, J.B., and Genzel, R. (1987). ‘Detection of OH rotational emission from comet P/Halley in the far-infrared.’ Astron. Astrophys. 187, 451.Google Scholar
Telesco, C.M., Decher, R., Baugher, C., Campine, H., Mozurkewich, D., Thronson, H.A., Cruikshank, D.P., Hammel, H.B., Larson, S., and Sekanina, Z. (1986). ‘Thermal-infrared and visual imaging of comet Giacobini-Zinner.’ Astrophys. J. Lett. 310, 61.Google Scholar
Tokunaga, A.T. (1989). ‘Infrared detector arrays and some applications to spectroscopy.’ Ap. Space Sci. 160, 333 Google Scholar
Tokunaga, A.T. (1986). The NASA Infrared Telescope Facility Photometry Manual.Google Scholar
Tokunaga, A.T. (1984). ‘A reevaluation of the 20 magnitude system.’ Astron. J. 89, 172 Google Scholar
Tokunaga, A.T., Golisch, W.F., Griep, D.M., Kaminski, C.D., and Hanner, M.S. (1986). ‘The NASA infrared telescope facility Comet Halley monitoring program. I. Preperihelion results.’ Astron. J. 92, 1183.Google Scholar
Tokunaga, A.T., Smith, R.G., and Irwin, E. (1987). ‘Use of a 32-element Reticon array for 1 to 5 micrometer spectroscopy.’ In Infrared Astronomy with Arrays (Wynn-Willians, C.G. and Becklin, E.E., Eds.), Univ. of Hawaii, Honolulu, P. 367.Google Scholar
Wade, R. (1983). ‘A 1-5 micron cooled grating array spectrometer and Fabry-Perot system for the UKIRT.’ Proc. SPIE 445, 47.Google Scholar
Walker, R.G., Aumann, H.H., Davies, J., Green, S., De Jong, T., Houck, J.R., and Solfer, B.T. (1984). Observations of comet IRAS-Araki-Alcock 1983d.’ Astrophys. J. 278, Lll.Google Scholar
Wamsteker, W. (1981). ‘Standard stars and calibration for JHKLM photometry,’ Astron. Astro phys. 97, 329.Google Scholar
Weaver, H.A. (1989). ‘The volatile composition of comets.’ In Highlights of Astronomy, 8, 387.Google Scholar
Weaver, H.A., Mumma, M.J., Larson, H.P., and Davis, D.S. (1986). ‘Post-perihelion observations of water in comet Halley.’ Nature 324, 441.Google Scholar
Witteborn, F.C., and Bregman, J.D. (1984). ‘A cryogenically cooled, multidetector spectrometer for infrared astronomy.’ Proc. SPIE 509, 123.Google Scholar
Wolfe, W.L., and Zissis, G.J. (1978). The Infrared Handbook, P. 7-118.Google Scholar
Wright, E.L. (1976). ‘Recalibration of the far-infrared brightness temperatures of the planets.’ Astrophys. J. 210, 250.Google Scholar
Wyckoff, S. (1982). Overview of comet observations.’ In Comets (Wilkening, L.L., Ed.), Univ. of Arizona Press, Tucson, P. 3.Google Scholar
Wynn-Williams, C.G., and Becklin, E.E., Eds. (1987). Infrared Astronomy with Arrays, Proc. Workshop on Ground-Based Astronomical Observations with Infrared Array Detectors. In stitute for Astronomy, Univ. of Hawaii, Honolulu Google Scholar