Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:17:48.870Z Has data issue: false hasContentIssue false

In-Situ Exploration of Dust in the Solar System and Initial Results from the Galileo Dust Detector

Published online by Cambridge University Press:  12 April 2016

E. Grün
Affiliation:
Max-Plank-Institut für Kernphysik, 6900 Heidelberg, Germany
H. Fechtig
Affiliation:
Max-Plank-Institut für Kernphysik, 6900 Heidelberg, Germany
M. S. Hanner
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91103, U.S.A.
J. Kissel
Affiliation:
Max-Plank-Institut für Kernphysik, 6900 Heidelberg, Germany
B.-A. Lindblad
Affiliation:
Lund Observatory, 221 Lund, Sweden
D. Linkert
Affiliation:
Max-Plank-Institut für Kernphysik, 6900 Heidelberg, Germany
G. Morfill
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, 8046 Garching, Germany
H. A. Zook
Affiliation:
NASA Johnson Space Center, Houston, TX 77058, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In-situ measurements of interplanetary dust have been performed in the heliocentric distance range from 0.3 AU out to 18 AU. Due to their small sensitive areas (typically 0.01 m2 for the highly sensitive impact ionization sensors) or low mass sensitivities (≥10−9g of the large area penetration detectors) previous instruments recorded only a few 100 impacts during their lifetimes. Nevertheless, important information on the distribution of dust in interplanetary space has been obtained between 0.3 and 18 AU distance from the Sun. The Galileo dust detector combines the high mass sensitivity of impact ionization detectors (10−15 g) together with a large sensitive area (0.1 m2). The Galileo spacecraft was launched on October 18, 1989 and is on its solar system cruise towards Jupiter. Initial measurements of the dust flux from 0.7 to 1.2 AU are presented.

Type
Interplanetary Dust: Space and Earth Environment Studies
Copyright
Copyright © Kluwer 1991

References

Berg, O. E. and Grün, E. (1973) Evidence of hyperbolic cosmic dust particles. Space Research XIII, 10471055.Google Scholar
Berg, O. E. and Richardson, F. F. (1986) The Pioneer 8 cosmic dust experiment, Rev. Sei. Instrum. 40, 13331337.Google Scholar
Dietzel, H., Eichhorn, G., Fechtig, H., Grün, E., Hoffmann, H.J. und Kissel, J. (1973) The HEOS 2 and Helios micrometeoroid experiments, J. Phys. (E) Scientific Instrum., 6, 209217.Google Scholar
Grün, E., Pailer, N., Fechtig, H. and Kissel, J. (1980) Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by Helios 1, Planet. Space Sci., 29, 333349.Google Scholar
Grün, E., Fechtig, H. and Kissel, J. (1985a) Orbits of interplanetary dust particles inside 1 AU as observed by Helios, in Properties and Interactions of Interplanetary Dust, Giese, R. H. and Lamy, P. (eds.), Reidel, Dordrecht, pp. 105111.Google Scholar
Grün, E., Zook, H. A., Fechtig, H., and Giese, R. H. (1985b) Collisional balance of the meteoritic complex, Icarus, 62, 244272.Google Scholar
Grün, E., Fechtig, H., Hanner, M. S., Kissel, J., Lindblad, B. A., Linkert, D., Morfill, G. E. and Zook, H. A. (1990) The Galileo dust detector, submitted to Space Sci. Rev.Google Scholar
Hoffmann, H. J., Fechtig, H., Grün, E. und Kissel, J. (1975) Temporal fluctuation and anisotropy of the micrometeoroid flux in the earth-moon system, Plant. Space Sci., 23, 985991.Google Scholar
Humes, D.H. (1980) Results of Pioneer 10 and 11 meteoroid experiments: Interplanetary and near-Saturn. Journ. Geophys. Res., 85, 58415852.Google Scholar
Igenbergs, E., Hüdepohl, A., Uesugi, K. T., Hayashi, T., Svedham, H., Igelseder, H., Koller, G., Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, T., Fujimura, A., Ishii, N., Yamakoshi, K. and Nogami, K. (1990a) The Munich dust counter - A cosmic dust experiment on board of the Muses-A mission of Japan, in Origin and Evolution of Interplanetary Dust, This issue.Google Scholar
Igenbergs, E., Hlidepohl, A., Uesugi, K. T., Hayashi, T., Svedham, H., Igelseder, H., Koller, G., Glasmachers, A., Grün, E., Schwehm, G., Mizutani, H., Yamamoto, T., Fujimura, A., Ishii, N., Yamakoshi, K. and Nogami, K. (1990b) The present status of the Munich dust counter experiment on board of the Hiten spacecraft, in Origin and Evolution of Interplanetary Dust, This issue.Google Scholar
Leinert, C. and Grün, E. (1990) Interplanetary dust, in Physics of the Inner Heliosphere, Schwenn, R. and Marsch, E. (eds.), Springer-Verlag, Heidelberg, pp. 207275 Google Scholar
McDonnell, J. A. M., Berg, O. E., and Richardson, F. F. (1975) Spatial and time variations of the interplanetary microparticle flux analyzed from deep space probes Pioneers 8 and 9, Planet. Space Sci. 23, 205214.CrossRefGoogle Scholar
Zook, H. A. (1975) Hyperbolic cosmic dust: its origin and its astrophysical significance, Planet. Space Sci. 23, 13911397.Google Scholar