Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T19:09:02.607Z Has data issue: false hasContentIssue false

The Magnetic Field Structure of the Cometary Plasma Environment

Published online by Cambridge University Press:  12 April 2016

F. M. Neubauer*
Affiliation:
Institut für Geophysik und Meteorologie, Univeisität KölnAlbertus-Magnus-Platz5000 Köln 41FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The plasma surrounding a comet has the interplanetary magnetic field frozen in. The geometric interpretation of this property is considered. The frozen-in character of the magnetic field leads to the draping of magnetic field lines around the inner coma, where, by exclusion of the inner purely cometary ionosphere, a magnetic cavity is formed inside a region of magnetic field pile-up. The consequences of these physical processes can nicely be diagnosed and tested by interplanetary tangential discontinuities serving as tracers of the magnetoplasma flow. The topology of the magnetic field around the cavity and the shape of the ionopause, as well as the formation of the magnetic tail, are discussed. Particularly in the outer regions, the magnetic field is disturbed by strong magnetic turbulence. This turbulence plays a role in accelerating cometary and also solar wind ions to high energies.

Type
Section VII: Plasmas and Fields
Copyright
Copyright © Kluwer 1991

References

Alfvén, H. (1957), ‘On the theory of comet tails’, Tellus, 9, 9296.Google Scholar
Biermann, L. (1951), ‘Kometenschweife und Solare Korpuskularstrahlung’, Zs. f. Astrophysik, 29, 274286.Google Scholar
Cravens, T.E. (1986), ‘The physics of the cometary contact surface’, ESA SP-250, Volume I, 241246.Google Scholar
Glassmeier, K.H., Coates, A.J., Acuna, M.H., Goldstein, M.L., Johnstone, A.D., Neubauer, F.M., and Reme, H. (1989), ‘Spectral charateristics of low-frequency plasma turbulence upstream of comet p/Halley’, J. Geophys. Res., 94, 3748.Google Scholar
Glassmeier, K.H., Neubauer, F.M., Acuna, M.H., and Mariani, F. (1987), ‘Strong hydromagnetic fluctuations in the comet P/Halley magnetosphere observed by the Giotto magnetic field experiment’, ESA SP-250, Volume III, 167171.Google Scholar
Huebner, W.F., Boice, D.C., Schmidt, H.U., Schmidt-Voigt, M., Wegmann, R., Neubauer, F.M., and Slavin, S. (1989) ‘Time-dependent study of magnetic fields in comets Giacobini-Zinner and Halley’, Adv. Space Res., Volume 9, No. 3, (3)385(3)388.Google Scholar
Ip, W.H., and Axford, W.I. (1987),’The formation of a magnetic field free cavity at comet Halley’, Nature, 325, 418419.Google Scholar
Marochnik, L.S. (1982) ‘Solar wind magnetic field penetration into cometary ionospheres’ The Moon and the Planets, D. Reidel Publishing Company, Dordrecht, pp. 353370.Google Scholar
Neubauer, F.M. (1989) ‘Magnetic field regions formed by the interaction of the solar wind with comet Halley’, in Comet Halley, Investigations, Results, Interpretations, Ellis Horwood Ltd., Chichester, England.Google Scholar
Neubauer, F.M. (1988) ‘The ionopause transition and boundary layers at comet Halley from Giotto magnetic field observations’, J. Geophys. Res., 93, 72727281.Google Scholar
Neubauer, F.M., Glassmeier, K.H., Pohl, M., Raeder, J., Acuna, M.H., Burlaga, L.F., Ness, N.F., Musmann, G., Mariani, F., Wallis, M.K., Ungstrup, E., and Schmidt, H.U. (1986) ‘First results from the Giotto magnetometer experiment at comet Halley’, Nature, 321, 352355.Google Scholar
Niedner, M.B., Ionson, J.A., and Brandt, J.C. (1981) ‘Interplanetary gas. XXVI. On the reconnection of magnetic fields in cometary ionospheres at interplanetary sector boundary crossings’, Astrophys. J., 245, 11591169.Google Scholar
Raeder, J., Neubauer, F.M., Ness, N.F., and Burlaga, L.F. (1987) ‘Macroscopic perturbations of the IMF by P/Halley as seen by the Giotto magnetometer’, Astron. Astrophys., 187, 6164.Google Scholar
Riedler, W., Schwingenschuh, K., Yeroshenko, Ye. G., Styashkin, V.A., and Russell, C.T. (1986) ‘Magnetic field observations in comet Halley’s coma’, Nature, 321, 288289.Google Scholar
Schmidt, H.U., Wegmann, R., Huebner, W.F., and Boice, D.C. (1988) ‘Cometary gas and plasma flow with detailed chemistry’, Published in Computer Phys. Comm., 49, 17.Google Scholar
Slavin, J., Smith, E.J., Daly, P.W., Flammer, K.R., Gloeckner, G., Goldberg, B.A., McComas, D.J., Scarf, F.L., and Steinberg, J.L. (1987), ‘The P/Giacobini-Zinner magnetotail’, ESA SP-250, 8187.Google Scholar
Slavin, J.A., Smith, E.J., Tsurutani, B.T., Siscoe, G.L., Jones, D.E., and Mendis, D.A. (1986) ‘Giacobini-Zinner magnetotail: ICE magnetic field observations’, Geophys. Res. Letts., 13, 283286.Google Scholar
Sonnerup, B.U.O, and Cahill, L.J. Jr. (1968), ‘Explorer 12 observations of the magnetopause current layer’, J. Geophys. Res., 73, 17571770.CrossRefGoogle Scholar
Tsurutani, B.T., and Smith, E.J. (1986) ‘Strong hydromagnetic turbulence associated with Comet Giacobini-Zinner’, Geophys. Res. Lett., 13, 259262.Google Scholar
Wu, Z.-J. (1988) ‘Calculation of the shape of the contact surface at comet Halley’, Ann. Geophys., 6, 355360.Google Scholar
Wu, C.S., and Davidson, R.C. (1972) ‘Electromagnetic instabilities produced by neutral particle ionization in interplanetary space’, J. Geophys. Res., 77, 53995406.Google Scholar