Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T17:38:13.524Z Has data issue: false hasContentIssue false

Particle Transport Processes

Published online by Cambridge University Press:  12 April 2016

Georges Michaud
Affiliation:
Département de PhysiqueUniversité de Montréal
C.R. Proffitt
Affiliation:
Space Telescope Science Institute

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of gravitational settling and radiation driven diffusion on the evolution of stars near the main sequence is reviewed. New simplified formulae for calculating diffusion are proposed that improve on previous such formulae. The reliability of available diffusion coefficients is discussed and areas where further work is needed are identified. Newly available opacity calculations are used to estimate the effects of radiative acceleration on Fe.

The size of the modifications to the evolution are shown to be modest: a reduction of order 10% on the evolutionary age of globular clusters. There are indications from the Li abundance in the high Teff halo stars that some turbulence is present below the convection zone. Models calibrated using solar properties reproduce the Teff at which the Li gap is observed in F stars as well as its depth without any arbitrary parameter. Similarly the presence of AmFm stars is explained over the Teff range where they are observed.

Type
III. Input physics for stellar structure
Copyright
Copyright © Astronomical Society of the Pacific 1993

References

Alecian, G., and Artru, M.-C., 1990, A&A, 234, 323.Google Scholar
Alecian, G., Michaud, G., and Tully, J. 1992, preprint.Google Scholar
Aller, L.H., and Chapman, S. 1960, ApJ, 132, 461.CrossRefGoogle Scholar
Baglin, A. 1972, A&A, 19, 45.Google Scholar
Bahcall, J.N., and Loeb, A. 1990, ApJ, 360, 267.CrossRefGoogle Scholar
Bahcall, J.N., & Pinsonneault, M.H. 1991, ApJ, submittedGoogle Scholar
Boesgaard, A.M., and Tripicco, M.J. 1986, ApJL, 302, L49.Google Scholar
Burgers, J.M. 1969, Flow Equations for Composite Gases. (New York: Academic Press).Google Scholar
Cayrel, R., Burkhart, C., and Van’t Veer, C. 1991, in IAU Symposium 145, Evolution of Stars: the Photospheric Abundance Connection, Golden Sands, Bulgaria, 25-31 august, ed. Michaud, G. and Tutukov, A. (Kluwer), pp. 99110.Google Scholar
Chaboyer, B., Deliyannis, C.P., Demarque, P., Pinsonneault, M.H., & Sarajedini, A. 1992, ApJ, 388, 372 Google Scholar
Chapman, S., and Cowling, T.G. 1970, The Mathematical Theory of non-uniform Gases (3d ed.; Cambridge: Cambridge University Press).Google Scholar
Charbonneau, P., and Michaud, G. 1988, ApJ, 327, 809.CrossRefGoogle Scholar
Charbonneau, P., and Michaud, G. 1991, ApJ, 370, 693.CrossRefGoogle Scholar
Cox, A.N.. Guzik, J.A., and Kidman, R.B. 1989, ApJ, 342, 1187.Google Scholar
Deliyannis, C.P., Pinsonneault, M.H. & Duncan, D.K. 1992, ApJ, submittedGoogle Scholar
Deliyannis, C.P., Pinsonneault, M.H. & Demarque, P. 1992, ApJS, 78,Google Scholar
DeWitt, H.E. 1961, J. Nucl. Energy C, Plasma Physics, 2, 27.Google Scholar
Dziembowski, W.A., Pamyatnykh, A.A., and Sienkeiwicz, R. 1992, preprintGoogle Scholar
Eddington, A.S. 1926, The Internal Constitution of the Stars (New York: Dover [1959] reprint), § 199.Google Scholar
Fontaine, et al 1977.Google Scholar
Guzik, J.A., & Cox, A.N. 1992, ApJL, 386, 729.CrossRefGoogle Scholar
Hobbs, L.M., Welty, D.E. & Thornburn, J.A. 1991, ApJ 373, L47 CrossRefGoogle Scholar
Kurucz, R.L. 1991, in Stellar Atmospheres: Beyond Classical Models, ed. by Crivellari, L., Hubeny, I. and Hummer, D.G., NATO ASI Series (Dordrecht, Kluwer), p. 440.Google Scholar
Michaud, G. 1970, ApJ, 160, 641.Google Scholar
Michaud, G. 1977, Nature, 266, 433.Google Scholar
Michaud, G. 1982, ApJ, 258, 349.Google Scholar
Michaud, G. 1986, ApJ, 302, 650.Google Scholar
Michaud, G. 1987, Physica Scripta, 36, 112.Google Scholar
Michaud, G. 1991, Annales de Physique Fr., 16, 481.Google Scholar
Michaud, G., and Charbonneau, P. 1991, Space Science Reviews, 57, 1.Google Scholar
Michaud, G., Charland, Y., Vauclair, S., and Vauclair, G. 1976, ApJ, 210, 447.Google Scholar
Michaud, G., Tarasick, D., Charland, Y., and Pelletier, C. 1983, ApJ, 269, 239.Google Scholar
Noerdlinger, P.D. 1977, A&A, 57, 407.Google Scholar
Noerdiinger, P.D. & Arigo, R.J. 1980, ApJL, 237, L15 Google Scholar
Paquette, C., Pelletier, C., Fontaine, G., and Michaud, G. 1986, ApJS, 61, 177.Google Scholar
Proffitt, C.R. & Michaud, G. 1991a, ApJ, 371, 584 Google Scholar
Proffitt, C.R. & Michaud, G. 1991b, ApJ, 380, 238 CrossRefGoogle Scholar
Proffitt, C.R. & VandenBerg, D.A. 1991, ApJS, 77, 473 CrossRefGoogle Scholar
Richer, J., and Michaud, G. 1992, in preparation.Google Scholar
Richer, J., Michaud, G., and Proffitt, C. 1992, ApJS, in press.Google Scholar
Rogers, F.J., and Iglesias, C.A. 1992, ApJS, 79, 507.Google Scholar
Roussel-Dupré, R. 1981, ApJ, 243, 329.Google Scholar
Roussel-Dupré, R. 1982, ApJ, 252, 393.Google Scholar
Smith, M.A. 1973, ApJS, 25, 277.Google Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357 Google Scholar
Stringfellow, G.S., Bodenheimer, P., Noerdlinger, P.D. & Arigo, R.J. 1983, ApJ, 264, 228 Google Scholar
Vauclair, G., Vauclair, S., and Michaud, G. 1978, ApJ, 223, 920.CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., and Pamjatnikh, A. 1974, A&A, 31, 63.Google Scholar
Wambsganss, J. 1988, A&A, 205, 125.Google Scholar
Watson, W.D. 1971, A&A, 13, 263.Google Scholar