Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:53:19.111Z Has data issue: false hasContentIssue false

Probing Accretion Disks in AGN with Water Masers

Published online by Cambridge University Press:  12 April 2016

Philip R. Maloney*
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309–0389

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extremely luminous extragalactic water masers – the so-called “megamasers”, with isotropic luminosities of tens to hundreds of solar luminosities – appear to be uniquely associated with active galactic nuclei. The recent survey of Braatz et al. indicates that 20% of Seyfert 2 galaxies have detectable water maser emission. Although originally suggested to arise in shocks, it now seems likely that the masers arise from the irradiation of high-pressure molecular gas by X-rays from the AGN. Quantitative modelling shows that the observed megamaser luminosities can plausibly be produced in this fashion. Both observational limits on the size scales and the high gas pressures required indicate that the water maser emission arises on very small scales, either in a circumnuclear “torus” or the accretion disk itself. In the best-studied case, NCG 4258, the masers are produced in a geometrically thin, warped accretion disk. The maser models can be used to derive quantitative information about the physical conditions in the disk, namely, the mass accretion rate, and therefore the radiative efficiency. I discuss the implications of water maser observations and models for the study of accretion disks and circumnuclear tori in AGN.

Type
Part 3. Fundamental Physical Processes
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Antonucci, R. 1993, ARAA, 31 473.Google Scholar
Braatz, J.A., Wilson, A.S., & Henkel, C. 1994, ApJ, 437, L99.Google Scholar
Braatz, J.A., Wilson, A.S., & Henkel, C. 1996, ApJS, 106, 51 Google Scholar
Churchwell, E., Witzel, A., Huchtmeier, W., Pauliny-Toth, I., Roland, J., & Suben, W. 1977, A&A 54, 969.Google Scholar
Claussen, M.J., & Lo, K.-Y. 1986, ApJ, 308, 592.Google Scholar
Collison, A.J., & Watson, W.D. 1995, ApJ 452, L103.CrossRefGoogle Scholar
de Jong, T. 1973, A&A 26, 297.Google Scholar
Done, C., Madejski, G.M., & Smith, D.A. 1996, ApJ 463, L63.Google Scholar
dos Santos, P.M., & Lepine, J.R.D. 1979, Nature, 278, 34.Google Scholar
Elitzur, M. 1992, Astronomical Masers (Dordrecht: Kluwer)Google Scholar
Gallimore, J.E., Baum, S.A., O’Dea, C.P., Brinks, E., & Pedlar, A. 1996, ApJ 462, 740.Google Scholar
Genzel, R., & Downes, D. 1979, A&A 72, 234.Google Scholar
Greenhill, L.J., Gwinn, C.R., Antonucci, R., & Barvainis, R. 1996, ApJ (Letters), in press.Google Scholar
Greenhill, L.J., Jiang, D.R., Moran, J.M., Reid, M.J., Lo, K.Y., & Claussen, M.J. 1995a, ApJ, 440, 619.Google Scholar
Greenhill, L.J., Henkel, C., Becker, R., Wilson, T.L., & Wouterloot, J.G.A. 1995b, A&A, 304, 21.Google Scholar
Haschick, A.D., & Baan, W.A. 1985, Nature, 314, 144.Google Scholar
Herrnstein, J., Greenhill, L., & Moran, J. 1996, ApJ, 468, L17.Google Scholar
Herrnstein, J., Moran, J., Greenhill, L., Diamond, P., Miyoshi, M., Nakai, N., & Inoue, M. 1996, in The Physics of Liners in View of Recent Observations, ed. Eracleous, M., Koratkar, A.P., Ho, L.C., & Leitherer, C. (San Francisco: Astr. Soc. of the Pacific), in press.Google Scholar
Iwasawa, K., Koyama, K., Awaki, H., Kunieda, H., Makishima, K., Tsuru, T., Ohashi, T., & Nakai, N. 1993, ApJ 409, 155.Google Scholar
Koekemoer, A.M., Henkel, C., Greenhill, L.J., Dey, A., van Breugel, W., Codella, C., & Antonucci, R. 1995, Nature, 378, 697.Google Scholar
Krolik, J.H., & Begelman, M.C. 1986, ApJ, 308, L55.Google Scholar
Krolik, J.H., & Begelman, M.C. 1988, ApJ, 329, 702.Google Scholar
Lasota, J.P., Abramowicz, M.A., Chen, X., Krolik, J., Narayan, R., & Yi, I. 1996, ApJ, 462, 162.Google Scholar
Makishima, K., Fujimoto, R., Ishisaki, Y., Kii, T., Loewenstein, M., Mushotzky, R., Serlemitsos, P., Sonobe, T., Tashiro, M., & Yaqoob, T. 1994, PASJ, 46, L77.Google Scholar
Maloney, P.R., Begelman, M.C., & Pringle, J.E. 1996, ApJ, in press.Google Scholar
Maloney, P.R., Hollenbach, D.J., & Tielens, A.G.G.M. 1996, ApJ 466, 561.Google Scholar
Maoz, E. 1995, ApJ, 447, L91.Google Scholar
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M. 1995, Nature, 373, 127.Google Scholar
Moran, J., Greenhill, L., Herrnstein, J., Diamond, P., Miyoshi, M., Nakai, N., & Inoue, M. 1996, in Quasars and AGN: High Resolution Imaging, Proc. Nat. Acad. Sci., in press.Google Scholar
Mushotsky, R., Done, C., & Pounds, K.A. 1993, ARAA 31, 717.Google Scholar
Nakai, N., Inoue, M., & Miyoshi, M. 1993, Nature, 361, 45.Google Scholar
Nakai, N., Inoue, M., Miyazawa, K., & Hall, P. 1995, PASJ 47, 771.Google Scholar
Neufeld, D.A., & Maloney, P.R. 1995, ApJ, 447, L19.Google Scholar
Neufeld, D.A., Maloney, P.R., & Conger, S. 1994, ApJ, 436, L127.Google Scholar
Pier, E.A., & Krolik, J.H. 1992, ApJ, 399, L23 Google Scholar
Pringle, J.E. 1996, MNRAS, 281, 357.Google Scholar
Shakura, N.I., & Sunyaev, R.A. 1973 A&A 24, 337.Google Scholar