No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
I discuss the use of Very Long Baseline Interferometer (VLBI) phase scintillations to probe the conditions of plasma turbulence in the solar wind. Specific results from 5.0 and 8.4 GHz observations with the Very Long Baseline Array (VLBA) are shown. There are several advantages of phase scintillation measurements. They are sensitive to fluctuations on scales of hundreds to thousands of kilometers, much larger than those probed by IPS intensity scintillations. In addition, with the frequency versatility of the VLBA one can measure turbulence from the outer corona ~ 5 –10 R⊙ to well past the perihelion approach of the Helios spacecraft. This permits tests of the consistency of radio propagation and direct in-situ measurements of turbulence. Such a comparison is made in the present paper. Special attention is dedicated to measuring the dependence of the normalization coefficient of the density power spectrum, on distance from the sun. Our results are consistent with the contention published several years ago by Aaron Roberts, that there is insufficient turbulence close to the sun to account for the heating and acceleration of the solar wind. In addition, an accurate determination of the relationship could aid the detection of transients in the solar wind.