Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-11T07:20:23.504Z Has data issue: false hasContentIssue false

Astrobiology in Brazil: early history and perspectives

Published online by Cambridge University Press:  18 July 2012

Fabio Rodrigues
Affiliation:
Instituto de Química, Universidade de São Paulo, Brazil email: farod@iq.usp.br
Douglas Galante
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Ivan G. Paulino-Lima
Affiliation:
NASA-Ames Research Center, USA
Rubens T.D. Duarte
Affiliation:
Instituto Oceanográfico, Universidade de São Paulo, Brazil
Amancio C.S. Friaça
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Claudia Lage
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
Eduardo Janot-Pacheco
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Ramachrisna Teixeira
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Jorge E. Horvath
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil

Abstract

This review reports the Brazilian history in astrobiology, as well as the first delineation of a vision of the future development of the field in the country, exploring its abundant biodiversity, highly capable human resources and state-of-the-art facilities, reflecting the last few years of stable governmental investments in science, technology and education, all conditions providing good perspectives on continued and steadily growing funding for astrobiology-related research. Brazil is growing steadily and fast in terms of its worldwide economic power, an effect being reflected in different areas of the Brazilian society, including industry, technology, education, social care and scientific production. In the field of astrobiology, the country has had some important landmarks, more intensely after the First Brazilian Workshop on Astrobiology in 2006. The history of astrobiology in Brazil, however, is not so recent and had its first occurrence in 1958. Since then, researchers carried out many individual initiatives across the country in astrobiology-related fields, resulting in an ever growing and expressive scientific production. The number of publications, including articles and theses, has particularly increased in the last decade, but still counting with the effort of researchers working individually. That scenario started to change in 2009, when a formal group of Brazilian researchers working with astrobiology was organized, aiming at congregating the scientific community interested in the subject and to promote the necessary interactions to achieve a multidisciplinary work, receiving facilities and funding from the University de Sao Paulo and other funding agencies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrevaya, X.C. et al. (2011). Comparative survival analysis of deinococcus radiodurans and the Haloarchaea Natrialba magadii and Haloferax volcanii exposed to vacuum ultraviolet irradiation. Astrobiology 11(10), 10341040.Google Scholar
AGA0316. (2012). Website of the discipline A vida no contexto cósmico (Life in the Cosmic Context). https://sistemas.usp.br/jupiterweb/obterDisciplina?sgldis = AGA0316&verdis = 1(retrieved February 2012)Google Scholar
Albarran, G. et al. (1993). A plausible route for the synthesis of bio-organic compounds in the primitive earth from mineral salts. An overview. In International Conference on Chemical Evolution and the Origin of Life: Self-Organization of the Macromolecules of Life, Trieste.Google Scholar
Almeida, M.A.N. & de Franca, F.P. (1999). Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger. World J. Microbiol. Biotechnol. 15(4), 439442.Google Scholar
Alves, D. & Fontanari, J.F. (1997). Error threshold in the evolution of diploid organisms. J. Phys. A: Math. Gen. 30(8), 26012607.Google Scholar
Alves, D. et al. (2001). Group selection models in prebiotic evolution. Phys. Rev. E 63(1), 19.Google Scholar
Andrade, D.P.P. et al. (2009). Positive and negative ionic desorption from condensed formic acid photoexcited around the O 1 s-edge: relevance to cometary and planetary surfaces. Surf. Sci. 603(22), 33013306.Google Scholar
Babinski, M. et al. (1995). The PB/PB age of the minas supergroup carbonate rocks, quadrilatero FERRIFERO, BRAZIL. Precambrian Res. 72(3–4), 235245.Google Scholar
Barcelos, E.D. (2001). Telegramas Para Marte – A Busca Científica de Vida e Inteligência Extraterrestre. São Paulo, Jorge Zahar.Google Scholar
Barnosky, A.D. et al. (2011). Has the Earth's sixth mass extinction already arrived? Nature 471(7336), 5157.Google Scholar
Beauge, C. et al. (2003). Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. Astrophys. J. 593(2), 11241133.Google Scholar
Beauge, C. et al. (2006). Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Mon. Not. R. Astron. Soc. 365(4), 11601170.CrossRefGoogle Scholar
Blumberg, B.S. (2003). The NASA astrobiology institute: early history and organization. Astrobiology 3(3), 463470.Google Scholar
Boechat-Roberty, H.M. et al. (2005). Destruction of formic acid by soft X-rays in star-forming regions. Astron. Astrophys. 438(3), 915922.Google Scholar
Boechat-Roberty, H.M. et al. (2009). Dissociation of the benzene molecule by ultraviolet and soft X-rays in circumstellar environment. Mon. Not. R. Astron. Soc. 394(2), 810817.Google Scholar
Carneiro, C.E.A. et al. (2011). Adsorption of amino acids (Ala, Cys, His, Met) on zeolites: Fourier transform infrared and Raman spectroscopy investigations. Astrobiology 11(5), 409418.Google Scholar
Cavalcanti, A.R.O. & Ferreira, R. (2001). On the relative content of G,C bases in codons of amino acids corresponding to Class I and II aminoacyl-tRNA synthetases. Orig. Life Evol. Biosph. 31(3), 257269.Google Scholar
Cavalcanti, A.R.O. et al. (2004). On the classes of aminoacyl-tRNA synthetases, amino acids and the genetic code. Orig. Life Evol. Biosph. 34(4), 407420.CrossRefGoogle ScholarPubMed
Chela-Flores, J. (2001). The New Science of Astrobiology: from Genesis of the Living Cell to Evolution of Intelligent Behaviour in the Universe. Kluwer Academic Publishers, Dordrecht, Boston.Google Scholar
Collins, C. et al. (2000). Irradiation promoted production of organic precursor species in inorganic solids on the prebiotic earth. In The Role of Radiation in the Origin and Evolution of LIFE, ed. Akaboshi, M., Fujii, N. & Navarro-González, R., p. 143153. Kyoto University Press, Kyoto.Google Scholar
Crowe, M.J. (1986). The Extraterrestrial Life Debate, 1750–1900: the Idea of a Plurality of Worlds from Kant to Lowell. Cambridge University Press, Cambridge, New York.Google Scholar
Cruz, A.K. et al. (1988). Cyclic AMP-dependent, constitutive thermotolerance in the adenylate cyclase-deficient CR-1 (crisp) mutant of neurospora-crassa. Curr. Genet. 13(5), 451454.Google Scholar
da Rosa, M.B. et al. (2009). Spore dosimetry: bacillus subtilis TKJ6312 as biosensor of biologically effective solar radiation. Quimica Nova 32(2), 282285.Google Scholar
De Duve, C. (1995). Vital Dust: Life as a Cosmic Imperative. Basic Books, New York.Google Scholar
de Duve, C. (2011). Life as a cosmic imperative? Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 369(1936), 620623.Google Scholar
de Mello, G.F.P. et al. (2007). A detailed catalogue of astrobiologically interesting stars within 20 parsecs of the sun. Astrobiology 7(3), 527527.Google Scholar
de Oliveira, V.E. et al. (2010). Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 41(6), 642650.Google Scholar
de Souza, T.P. et al. (2009). The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem 10(6), 10561063.Google Scholar
Deeg, H.J. et al. (2010). A transiting giant planet with a temperature between 250 K and 430 K. Nature 464(7287), 384387.Google Scholar
Dick, S.J. (1982). Plurality of Worlds: the Origins of the Extraterrestrial Life Debate from Democritus to Kant. Cambridge University Press, Cambridge, New York.Google Scholar
Dick, S.J. (1996). Other worlds – the cultural significance of the extraterrestrial LIFE debate. Leonardo 29(2), 133137.Google Scholar
Dick, S.J. & Strick, J.E. (2004). The Living Universe: NASA and the Development of Astrobiology. Rutgers University Press, New Brunswick, NJ.Google Scholar
Dos Santos, W.A. et al. (2009). A knowledge-based and model-driven requirements engineering approach to conceptual satellite design. In Conceptual Modeling – Er 2009, Proceedings, ed. Laender, A.H.F., Castano, S., Dayal, U., Casati, F. & DeOliveira, J.P.M., pp. 487500. Springer-Verlag, Berlin.Google Scholar
Duarte, R.T.D. (2010). Micro-organismos em ambientes criogênicos: gelo glacial, solos expostos por recuo de geleiras e permafrost polares. PhD, Universidade de São paulo.Google Scholar
Duffard, R. et al. (2004). Mineralogical characterization of some basaltic asteroids in the neighborhood of (4) Vesta: first results. Icarus 171(1), 120132.Google Scholar
Echer, E. et al. (2003). Geomagnetic effects of interplanetary shock waves during solar minimum (1995–1996) and solar maximum (2000). In Solar Variability as an Input to the Earth's Environment, ed. Wilson, A., pp. 641644. http://apps.webofknowledge.com/full_record.do?product = WOS&search_mode = GeneralSearch&qid = 1&SID = 1BO9HOJckMiahdFabPN&page = 1&doc = 2Google Scholar
Edwards, H. et al. (2003). Fourier-transform Raman spectroscopic studies of chronological change in stromatolitic cores from antarctic lake sediments. Int. J. Astrobiol. 1(4), 325331.Google Scholar
Edwards, H.G.M. et al. (2004a). Raman spectroscopy of senescing snow algae: pigmentation changes in an antarctic cold desert extremophile. Int. J. Astrobiol. 3(2), 125129.CrossRefGoogle Scholar
Edwards, H.G.M. et al. (2004b). Stratified response to environmental stress in a polar lichen characterized with FT-Raman microscopic analysis. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 60(8–9), 20292033.CrossRefGoogle Scholar
Fairchild, T.R. & Schopf, J.W. (1974). Late precambrian stromatolitic microflora from boorthanna, South Australia. Am. J. Bot. 61(5), 1515.Google Scholar
Fairchild, T.R. & Subacius, S.M.R. (1986). Microfossils associated with silicified stratifera-undata komar 1966 from the late Proterozoic Bambui Group, South-Central Brazil. Precambrian Res. 33(4), 323339.Google Scholar
Fairchild, T.R. et al. (1996). Recent discoveries of Proterozoic microfossils in south-central Brazil. Precambrian Res. 80(1–2), 125152.Google Scholar
Ferraz-Mello, S. (1964). Sur le problème de la pression de radiation solaire dans la Théorie des Satellites Artificiels. C. R. Acad. Sci. Paris 258, 463466.Google Scholar
Ferraz-Mello, S. (1966). Recherches sur le mouvement des satellites galilieens de Jupiter. Bull. Astron. 1(4), 287330.Google Scholar
Ferraz-Mello, S. (1988). A semi-numerical expansion of the averaged disturbing function for some very-high-eccentricity orbits. Celest. Mech. Dyn. Astron. 45(1–3), 6568.Google Scholar
Ferraz-Mello, S. et al. (1993). On symmetrical planetary corotations. Celest. Mech. Dyn. Astron. 55(1), 2545.Google Scholar
Ferreira-Rodrigues, A.M. et al. (2011). Photostability of amino acids to Lyman alpha radiation: glycine. Int. J. Mass Spectrom. 306(1), 7781.Google Scholar
Ferreira, R. (2007). Vida de Cientista: Notas Autobiográficas. Editora Átomo, Campinas, SP.Google Scholar
Ferreira, R. & Cavalcanti, A.R.D. (1997). Vestiges of early molecular processes leading to the genetic code. Orig. Life Evol. Biosph. 27(4), 397403.CrossRefGoogle ScholarPubMed
Ferreira, R. & Coutinho, K.R. (1993). Simulation studies of self-replicating oligoribotides, with a proposal for the transition to a peptide-assisted stage. J. Theor. Biol. 164(3), 291305.Google Scholar
Ferreira, R. & Tsallis, C. (1985). On the role of complementarity in biogenesis – a critical phenomenon approach. J. Theor. Biol. 117(2), 303317.CrossRefGoogle ScholarPubMed
Ferreira, R.C. (1953). Resolution of racemic mixtures by symmetrical agents. Nature 171(4340), 3939.CrossRefGoogle Scholar
Ferreira, R.D. (1951). Acidity and the systems of acids and bases. J. Chem. Phys. 19(6), 794794.Google Scholar
Ferreira, R.D.C. (1959). A method for the calculation of bond moments from electronegativity data. J. Phys. Chem. 63(5), 745747.Google Scholar
Fontanari, J.F. et al. (2006). Coexistence and error propagation in pre-biotic vesicle models: a group selection approach. J. Theor. Biol. 239(2), 247256.Google Scholar
Friaça, A.C.S. (2009). Website of the discipline AGA0316 in the year of 2009. http://www.astro.iag.usp.br/~amancio/aga0316.htm(retrieved February 2012).Google Scholar
Friaça, A.C.S. (2010). Subjetividade no reconhecimento da vida no universo. Rev. Brasil. Psicanálise [Braz. J. Psychoanal.] 44(3), 93.Google Scholar
Friaca, A.C.S. & Terlevich, R.J. (1998). Formation and evolution of elliptical galaxies and QSO activity. Mon. Not. R. Astron. Soc. 298(2), 399415.Google Scholar
Galante, D. (2009). Efeitos astrofísicos e astrobiológicos de Gamma-Ray Bursts. PhD, Universidade de São Paulo.Google Scholar
Gleiser, M. (2007). Asymmetric spatiotemporal evolution of prebiotic homochirality. Orig. Life Evol. Biosph. 37(3), 235251.CrossRefGoogle ScholarPubMed
Gleiser, M. & Walker, S.I. (2009). Toward homochiral protocells in noncatalytic peptide systems. Orig. Life Evol. Biosph. 39(5), 479493.Google Scholar
Griffith, C.A. et al. (2005). The evolution of Titan's mid-latitude clouds. Science 310(5747), 474477.CrossRefGoogle ScholarPubMed
Griffith, C.A. et al. (2006). Evidence for a polar ethane cloud on Titan. Science 313(5793), 16201622.Google Scholar
Guarnieri, R.A. et al. (2004). A study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in southern Brazil. Adv. Space Res. 34, 764768. http://www.sciencedirect.com/science/article/pii/S027311770400479XGoogle Scholar
Gunnlaugsson, H.P. et al. (2008). Telltale wind indicator for the Mars Phoenix lander. J. Geophys. Res., Planets 113, 68.Google Scholar
Guthke, K.S. (1990). The Last Frontier: Imagining other Worlds, from the Copernican Revolution to Modern Science Fiction. Cornell University Press, Ithaca, NY.Google Scholar
Hahn, G. et al. (1982). Korperlich erhaltene Scyphozoen-Reste aus dem Jungprakambrium Brasiliens. Geol. Palaeontol. 16, 117.Google Scholar
Huang, Y.S. et al. (2005). Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochim. Cosmochim. Acta 69(4), 10731084.Google Scholar
Hynek, J.A. (1972). The UFO Experience: A Scientific Inquiry. H. Regnery Co., Chicago.Google Scholar
IHU. (2012). Há vida fora da terra? As contribuições da exobiologia. http://www.ihu.unisinos.br/noticias/5370-ha-vida-fora-da-terra-as-contribuicoes-da-exobiologia (retrieved February 2012).Google Scholar
IPAA 2010 (2010). IPAA 2010. http://www.astro.iag.usp.br/~amancio/biodiversidade.htm(retrieved February 2012)Google Scholar
Kasting, J.F. (2010). How to Find a Habitable Planet. Princeton University Press, Princeton, NJ.Google Scholar
Kasting, J.F. et al. (1993). Habitable zones around main-sequence stars. Icarus 101(1), 108128.Google Scholar
Koide, T. et al. (2009a). The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Microbiol. 7(4), 297305.Google Scholar
Koide, T. et al. (2009b). Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5.Google Scholar
Kuhn, E. et al. (2009). New alk genes detected in Antarctic marine sediments. Environ. Microbiol. 11(3), 669673.Google Scholar
Lago, A.F. et al. (2004). Ionic dissociation of glycine, alanine, valine and proline as induced by VUV (21.21 eV) photons. Chem. Phys. 307(1), 914.CrossRefGoogle Scholar
Lane, J. (2010). Let's make science metrics more scientific. Nature 464(7288), 488489.Google Scholar
Leger, A. et al. (2009). Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first super-Earth with measured radius. Astron. Astrophy. 506(1), 287302.CrossRefGoogle Scholar
Leitão da Silva, L.A. (2006). Inteligência extraterrestre – perspectivas científicas. http://www.unisinos.br/exponha-se/body_61.htm (retrieved February 2012)Google Scholar
Lins, R.D. et al. (1996). Plural origins of the molecular homochirality in our biota. Z. Naturforsch. [C] 51(1–2), 7074.Google Scholar
Luisi, P.L. et al. (2008). Vesicle behavior: in search of explanations. J. Phys. Chem. B 112(46), 1465514664.Google Scholar
Luz, A.P. et al. (2004). A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can. J. Microbiol. 50(5), 323333.Google Scholar
Maciel, W.J. et al. (2003). An estimate of the time variation of the O/H radial gradient from planetary nebulae. Astron. Astrophys. 397(2), 667674.Google Scholar
Marais, D.J.D. et al. (2008). The NASA astrobiology roadmap. Astrobiology 8(4), 715730.Google Scholar
Martins, C.C. et al. (2005). Sterols and fecal microrganisms as indicator of sewage pollution in marine surface sediments of Admiralty Bay, Antarctic. Braz. J. Oceanogr. 1, 112.Google Scholar
Michtchenko, T. & de Mello, G.F.P. (2009). Dynamical Stability of Habitable Planets in Astrobiologically Interesting Binary Stars. In Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life. Vol. 420, pp. 353356.Google Scholar
Michtchenko, T.A. et al. (2002). Origin of the basaltic asteroid 1459 Magnya: a dynamical and mineralogical study of the outer main belt. Icarus 158(2), 343359.Google Scholar
Miller, S.L. (1953). A production of amino acids under possible primitive earth conditions. Science 117(3046), 528529.CrossRefGoogle ScholarPubMed
Nesvorny, D. & Ferraz-Mello, S. (1997). On the asteroidal population of the first-order Jovian resonances. Icarus 130(2), 247258.CrossRefGoogle Scholar
Neves, R. et al. (2007). Photodissociation of deutered benzene by soft X-ray: astrophysical implications. J. Electron Spectrosc. Relat. Phenom. 156: LXXIIILXXIII.Google Scholar
Omarov, T.B. & Tashenov, T. (2005 ). Tikhov's astrobotany as a prelude to modern astrobiology. Perspectives in Astrobiology (NATO Science Series Series I, Life and Behavioural Sciences), ed. Hoover, R.B., Rozanov, A.Y. & Paepe, R., pp. 86103. IOS Press, Amsterdam, Washington, DC.Google Scholar
Paulino-Lima, I.G. (2010). Investigação das condições de sobrevivência de microrganismos extremófilos em ambientes extraterrestres simulados. PhD, Universidade Federal do Riode janeiro.Google Scholar
Paulino-Lima, I.G. et al. (2010). Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans. Planet. Space Sci. 58(10), 11801187.Google Scholar
Paulino-Lima, I.G. et al. (2011). Survival of deinococcus radiodurans against laboratory-simulated solar wind charged particles. Astrobiology 11(9), 875882.Google Scholar
Pereira, F.A. (1946). A evolução Das Atmosferas Planetárias, Especialmente a Terrestre. José Olympio Editora, São Palo.Google Scholar
Pereira, F.A. (1958). Introdução à Astrobiologia. José Olympio Editora, São Paulo.Google Scholar
Pereira, F.A. (1966). O Livro Vermelho dos Discos Voadores. Edições Florença, São Palo.Google Scholar
Picazzio, E. et al. (2007). A high spectral resolution atlas and catalogue of emission lines of the comet C/2000 WM1 (LINEAR). Adv. Space Res. 39(3), 462467.Google Scholar
Pilling, S. et al. (2011) Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase. Astrobiology 11(9), 883893.Google Scholar
Pilling, S. et al. (2006a). Photodissociation of organic molecules in star-forming regions – II. Acetic acid. Astron. Astrophys. 449(3), 12891296.Google Scholar
Pilling, S. et al. (2006b). Ionization and dissociation of cometary gaseous organic molecules by solar wind particles – I. Formic acid. Mon. Not. R. Astron. Soc. 372(3), 13791388.Google Scholar
Pilling, S. et al. (2007). Photodissociation of organic molecules in star-forming regions – III. Methanol. Astron. Astrophys. 464(1), 393398.Google Scholar
Pilling, S. et al. (2009). DNA nucleobase synthesis at titan atmosphere analog by soft X-rays. J. Phys. Chem. A 113(42), 1116111166.Google Scholar
Pizzarello, S. et al. (2008). Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc. Natl. Acad. Sci. U.S.A. 105(10), 37003704.Google Scholar
Quental, T.B. & Marshall, C.R. (2009). Extinction during evolutionary radiations: reconciling the fossil record with molecular phylogenies. Evolution 63(12), 31583167.Google Scholar
Quental, T.B. & Marshall, C.R. (2010). Diversity dynamics: molecular phylogenies need the fossil record. Trends Eco. Evol. 25(8), 434441.Google Scholar
Quillfeldt, J. (2010). Disciplina BIO10–012: Exobiologia. http://exobiologia.ufrgs.br/ (retrieved February 2012).Google Scholar
Rampelotto, P. et al. (2007a). P-80: Exobioloby in Southern Brazil aiming the monitoring of the biologically-effective solar radiation. In: Bioastronomy 2007 Abstracts: Molecules, Microbes, and Extraterrestrial Life. San Juan, Puerto Rico. Astrobiology 7(3): 502540.Google Scholar
Rampelotto, P.H. et al. (2007b). Exobiology in southern Brazil aiming the monitoring of the biologically-effective solar radiation. Astrobiology 7(3), 528528.Google Scholar
Rampelotto, P.H. et al. (2009a). Exobiological application of spore dosimeter in studies involving solar UV radiation. Orig. Life Evol. Biosph. 39(3–4), 373374.Google Scholar
Rampelotto, P.H. et al. (2009b). Exobiology at Southern Brazil: Spore dosimetry and the UV solar radiation. In Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life ASP Conference Series. Vol. 420, 247. http://adsabs.harvard.edu/abs/2009ASPC..420..247RGoogle Scholar
Ribas, I. et al. (2010). Evolution of the solar activity over time and effects on planetary atmospheres. II. kappa(1) Ceti, an analog of the sun when life arose on earth. Astrophys. J. 714(1), 384395.Google Scholar
Rocha-Pinto, H.J. et al. (2000a). Chemical enrichment and star formation in the Milky Way disk I. Sample description and chromospheric age-metallicity relation. Astron. Astrophys. 358(3), 850868.Google Scholar
Rocha-Pinto, H.J. et al. (2000b). Chemical enrichment and star formation in the Milky Way disk II. Star formation history. Astron. Astrophys. 358(3), 869885.Google Scholar
Rodrigues, D.F. et al. (2009). Biogeography of two cold-adapted genera: Psychrobacter and exiguobacterium. ISME J. 3(6), 658665.Google Scholar
Schobbenhaus, C. & Brito-Neves, B.B. (2003). A geologia do Brasil no contexto da Plataforma Sul-Americana. Geologia, Tectônica e Recursos Minerais do Brasil, Bizzi, ed. Schobbenhaus, L.A., Vidotti, C., , R.M. & Alves, J.H., pp. 554. Companhia de Pesquisa de Recursos Minerais – Geological Survey of Brazil, Brasilia.Google Scholar
Schopf, J.W. & Fairchil, Tr (1973). Late precambrian microfossils – new stromatolitic biota from Boorthanna, South Australia. Nature 242(5399), 537538.Google Scholar
Schuch, A.P. et al. (2006). Comparisons of biologically effective doses of solar UV-radiation determined with spore dosimetry and spectral photometry in 2000–2003 at Southern Space Observatory, Brazil. In Space Life Sciences: Flight Measurements, Calibration of Detectors and Environmental Models for Radiation Analysis, ed. Heilbronn, L. & DeAngelss, G., pp. 17841788. http://apps.webofknowledge.com/full_record.do?product = WOS&search_mode = GeneralSearch&gid = 22&SID = 1BO9HOJckMiahdFabPN&page = 1&doc = 1Google Scholar
Schuch, A.P. et al. (2009). Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochem. Photobiol. Sci. 8(1), 111120.CrossRefGoogle ScholarPubMed
SIGA. (2012). Website of the discipline OVL504-Astrobiologia. https://www.siga.ufrj.br/sira/repositorio-curriculo/disciplinas/33228B29–92A4-F79D-273E-07BD579E9377.html (retrieved February 2012)Google Scholar
Silvestre, D.G.M. & Fontanari, J.F. (2005). Template coexistence in prebiotic vesicle models. Eur. Phys. J. B 47(3), 423429.Google Scholar
Slipher, E.C. (1962). The Photographic Story of Mars. Sky Pub. Corp, Cambridge, Mass.Google Scholar
Smith, P.H. et al. (2009). H2O at the phoenix landing site. Science 325(5936), 5861.Google Scholar
Soares, T.A. et al. (1997). Plural origins of molecular homochirality in our biota 0.2. The relative stabilities of homochiral and mixed oligoribotides and peptides. Z. Naturforsch. C: J. Biosci. 52(1–2), 8996.Google Scholar
Sukhanov, A.A. et al. (2010). The Aster project: flight to a near-earth asteroid. Cosmic Res. 48(5), 443450.CrossRefGoogle Scholar
Teixeira, L.C.R.S. et al. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 4(8), 9891001.CrossRefGoogle ScholarPubMed
Tessis, A.C. et al. (1995). Adsorption of 5′-AMP and catalytic synthesis OF 5′-ADP onto phosphate surfaces – correlation to solid-matrix structures. Orig. Life Evol. Biosph. 25(4), 351373.Google Scholar
Tosi, L.R.O. et al. (1993). Purification and characterization of an extracellular glucoamylase from the thermophilic fungus humicola-grisea var thermoidea. Can. J. Microbiol. 39(9), 846852.Google Scholar
Tsallis, C. (2008). My friend Ricardo Ferreira, an impressive natural philosopher. J. Braz. Chem. Soc. 19(2), 203205.Google Scholar
Tsallis, C. & Ferreira, R. (1983). On the origin of self-replicating information-containing polymers from oligomeric mixtures. Phys. Lett. A 99(9), 461463.Google Scholar
Van, P.T. et al. (2008). Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage. J. Proteome Res. 7(9), 37553764.CrossRefGoogle ScholarPubMed
Vieyra, A. et al. (1995). Reactions involving carbamyl-phosphate in the presence of precipitated calcium-phosphate with formation of pyrophosphate – a model for primitive energy-conservation pathways. Orig. Life Evol. Biosph. 25(4), 335350.Google Scholar
Webb, S. (2002). If the Universe is Teeming with Aliens…Where is Everybody?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. Copernicus Books in Association with Praxis Pub, New York.Google Scholar
Whiteway, J.A. et al. (2009). Mars water-ice clouds and precipitation. Science 325(5936), 6870.CrossRefGoogle ScholarPubMed
Whyte, L.G. et al. (2002). Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41(2), 141150.Google ScholarPubMed
Wuensche, C.A. (2006). I Brazilian workshop on astrobiology – Rio de Janeiro, RJ, 20 e 21 de março de 2006. In Report to Sao Paulo Research Foundation. http://www.das.inpe.br/astrobio/files/relatorio_cientifico_programa_BWA2006.pdf (retrieved February 2011).Google Scholar
Yamamoto, J.K. et al. (2005). A record of Permian subaqueous vent activity in southeastern Brazil. Nature 438(7065), 205207.Google Scholar
Zaia, D.A.M. (2003). From spontaneous generation to prebiotic chemistry. Quimica Nova 26(2), 260264.Google Scholar
Zaia, D.A.M. (2004). A review of adsorption of amino acids on minerals: was it important for origin of life? Amino Acids 27(1), 113118.Google Scholar
Zaia, D.A.M. (2012). Website of the discipline Astrobiologia – Universidade estadual de Londrina. http://www.uel.br/pos/astrobiologia/ (retrieved February 2012).Google Scholar
Zaia, D.A.M. et al. (2002). Adsorption of L-amino acids on sea sand. J. Braz. Chem. Soc. 13(5), 679681.Google Scholar
Zaia, D.A.M. et al. (2008). Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 38(6), 469488.Google Scholar