Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:17:35.445Z Has data issue: false hasContentIssue false

Evolution through the stochastic dyadic Cantor Set: the uniqueness of mankind in the Universe

Published online by Cambridge University Press:  22 October 2015

Diego S. Mahecha*
Affiliation:
Independent Researcher, Bogotá, Cra 24 No 16-97 Sur., Colombia

Abstract

The search for intelligent life or any type of life involves processes with nonlinear chaotic behaviours throughout the Universe. Through the sensitive dependence condition, chaotic dynamics are also difficult or impossible to duplicate, forecast and predict. Similar evolution patterns will result in completely different outcomes. Even, the intelligent life evolution pattern, based on carbon, DNA–RNA–protein, will differ from all possible sequences. In the present paper, the stochastic dyadic Cantor set models the many possible variations of such chaotic behaviours in the Universe, yielding to a tendency to zero, for any scenario of intelligent life evolution. The probability of the development of the exact microscopic and macroscopic scenario that is capable of supporting intelligent life or any other type of life in any planet is vanishingly small. Thus, the present analysis suggests that mankind, as an extremely statistically uncommon occurrence, is unique and alone in the Universe.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C.B. (1999). On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219237.Google Scholar
Argón-Calvo, M., Weygaert, R. & Jones, B. (2010). Multiscale phenomenology of the cosmic web. Mon. Not. R. Astron. Soc. 408, 21632187.Google Scholar
Balbus, S.A. & Hawley, J.F. (2000). Solar nebula magnetohydrodynamics. Space Sci. Rev. 92, 3954.Google Scholar
Bbeckwith, S. & Sargent, A. (1996). Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139144.Google Scholar
Beaugé, C., Callegari, N. Jr., Ferraz-Mello, S. & Michtchenko, T.A. (2005). Resonances and stability of extra-solar planetary systems. In Proc. IAU Colloquium on Dynamics of Populations of Planetary Systems, pp. 197.Google Scholar
Booth, M., Wyatt, M.C., Morbidelli, A., Moro-Martín, A., Levison, H.F. (2009). How common are extrasolar, late heavy bombardments? In Proc. Pathways Towards Habitable Planets, ed. du Foresto, V.C., Gelino, D.M. & Ribas, I., pp. 407. Astronomical Society of the Pacific, San Francisco.Google Scholar
Boss, A.P. & Goswami, J.N. (2006). Presolar Cloud collapse and the formation and early evolution of the solar Nebula. In Meteorites and the Early Solar System II, ed. Lauretta, D.S. & McSween, H.Y. Jr., Vol. 943, pp. 171186. University of Arizona Press, Tucson.Google Scholar
Chian, A.C. et al. (2007). Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles. Nonlin. Process. Geophys. 14, 1729.Google Scholar
Chiang, E. & Youdin, A.N. (2010). Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493522.Google Scholar
Diacu, F., Holmes, P. (1997). Celestial Encounters: the Origins of Chaos and Stability. Princeton University Press, Princeton, NJ.Google Scholar
Feigenbaum, M. (1983). Universal behavior in nonlinear systems. Physics D 7, 1639.Google Scholar
Gomes, R., Levison, H.F., Tsiganis, K. & Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature Lett. 436, 466469.Google Scholar
Hadjidemetriou, J.D. & Voyatzis, G. (2011). Different types of attractors in the three body problem perturbed by dissipative terms. Int. J. Bifurcation Chaos 21(8), 21952209.Google Scholar
Hahn, J.M. & Malhorta, R. (1998). Radial migration of protoplanets embedded in a massive planetesimal disk. Am. Astron. Soc. 30, 1052.Google Scholar
Harvard-Smithsonian Center for astrophysicist. (2013). Release No.: 2013-0. Monday, January 07, 2013 01:30:00 PM EST. (http://www.cfa.harvard.edu/news/2013/pr201301.html)Google Scholar
Hassan, M.K., Pavel, R.K. & Kurths, J. (2014). Dyadic Cantor set and its kinetic and stochastic counterpart. Chaos Solitons Fractals 60, 3139.Google Scholar
Haynes, W.B. (2007). Is the outer system chaotic? Nat. Phys. 3, 689691.Google Scholar
Horton, W., Weige, R.S. & Sprott, J.C. (2001). Chaos and the limits of predictability for the solar-wind-driven magnetosphere–ionosphere system. Phys. Plasmas 8, 2946.Google Scholar
Iovane, G., Laserra, E. & Tortoriello, F. (2004). Stochastic self-similar and fractal universe. Chaos Solitons Fractals 20, 415426.Google Scholar
Ispolatov, I. & Doebeli, M. (2014). Chaos and unpredictability in evolution. Evolution: Int. J. Org. Evol. 68, 13651373.Google Scholar
Kapitaniak, T., Maistrenko, Y., Stefanski, A. & Brindley, J. (1998). Bifurcations from locally to globally riddled basins. Phys. Rev. 57, 6253–2356.Google Scholar
Kellert, S.H. (1993). In the Wake of Chaos: Unpredictable Order in Dynamical Systems, pp. 32. University of Chicago Press, Chicago.Google Scholar
Königl, A. & Pudrtiz, R. E. (2000). Disk winds and the accretion outflow connection. In Protostars and Planets IV, ed. Mannings, V., Boss, A.P. & Russell, S.S., pp. 759787. University of Arizona Press, Tucson.Google Scholar
Kretke, K.A., Levison, H.F., Buie, M.W. & Morbidelli, A. (2010). A method to constrain the size of the protosolar nebula. Astron. J. 143, 91.Google Scholar
Kretke, K.A., Levison, H.F. & Buie, M.W. (2011). Constraining the size of the protosolar nebula. EPSC-DPS Joint Meeting 6, 1588.Google Scholar
Lake, G., Quinn, T. & Richardson, D.C. (1997). From Sir Isaac to the sloan survey: calculating the structure and chaos owing to gravity in the universe. New Orleans, LA, Jan. 5–7, 1997, pp. 1–10. In Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithm.Google Scholar
Lammer, H. (2013). Evolution of the Solar/Stellar Radiation and Plasma Environment. Origin and Evolution of Planetary Atmospheres, pp. 15-2a. Springer, Berlin, Heidelberg.Google Scholar
Laskar, J. (1994). Large scale chaos in the solar system. Astron. Astrophys. 287, 912.Google Scholar
Laskar, J. (1997). Large scale chaos and the spacing of the solar system. Astron. Astrophys. Lett. 317, 7578.Google Scholar
Laskar, J. (2003). Chaos in the solar system. Ann. Henri Poincaré 4(Suppl. 2), 693705.Google Scholar
Laskar, J. & Robutel, P. (1993). The chaotic obliquity of the planets. Nature 361, 608612.Google Scholar
Laughlin, G., Steinacker, A. & Adams, F.C. (2004). Type I planetary migration with MHD turbulence. Astrophys. J. 608, 489496.Google Scholar
Levison, H.F., Morbidelli, A., Gomes, R. & Backman, D. (2007). Planet migration in planetesimal disks. In Protostars and Planets, ed. Reipurth, V.B., Jewitt, D. & Keil, K., Vol. 951, pp. 669684. University of Arizona Press, Tucson.Google Scholar
Lissauer, J.J. & Stewart, G.R. (1993). Growth of planets from planetesimals. In Protostars and Planets III, ed. Levy, E.H. & Lunine, J.I., pp. 10611088. University of Arizona Press, Tucson.Google Scholar
Lufkin, G., Richardson, D.C. & Mundy, L.G. (2006). Planetesimals in the presence of giant planet migration. Astrophys. J. 653, 14641468.Google Scholar
Macek, W.M. (2009). Chaos and multifractals in the solar system plasma. In Proc. WSPC, pp. 62–81.Google Scholar
Malhorta, R. (1998). Giant Planet Orbital Migration in the Early Solar System, Vol. 30, pp. 1052. American Astronomical Society, Madison-Wisconsin.Google Scholar
Martinez, V. & Bernard, J. (1990). Why the universe is not a fractal. Mon. Not. R. Astron. Soc. 242, 517521.Google Scholar
McNeil, D. & Duncan, M. (2005). Effects of type one migration on terrestrial planet formation. Astron. J. 130, 28842899.Google Scholar
Montmerle, T., Augereau, J., Chaussidon, M., Gounelle, M., Marty, B., Morbidelly, A. (2006). Solar system formation and early evolution: the first 100 million years. Earth Moon Planets 98, 3995.Google Scholar
Nagasawa, M., Thommes, E.W., Kenyon, S.J., Bromley, B.C. & Lin, D.N.C. (2007). The diverse origins of terrestrial-planet systems. In Protostars and Planets, ed. Reipurth, V.B., Jewitt, D. & Keil, K., Vol. 951, pp. 639654. University of Arizona Press, Tucson.Google Scholar
Néron de Surgy, O. & Laskar, J. (1997). On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975989.Google Scholar
Papaloizou, J.C.B. & Szuszkiewicz, E. (2005). Orbital migration in protoplanetary disks. In Proc. IAU Symp., p. 229.Google Scholar
Park, H., Ryutov, D., Plechaty, C., Ross, S. & Kugland, N. (2013). Chaotic plasmas give birth to orderly electromagnetic fields. Science and Technology Review 23, 2124.Google Scholar
Pesin, Y. & Weiss, H. (1997). The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7, 89.Google Scholar
Puertz, S., Prokoph, A., Borchardt, G. & Mason, E. (2014). Evidence of synchronous, decadal to billion year's cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63, 5575.Google Scholar
Radburn-Smith, D., Lucey, J., Woudt, P., Kraan-Korteweg, R. & Watson, F. (2006). Structures in the Great Attractor region. Mon. Not. R. Astron. Soc. 369, 11311142.Google Scholar
Rafikov, R.R. (2004). Fast accretion of small planetesimals by protoplanetary cores. Astron. J. 128, 13481363.Google Scholar
Rafikov, R.R. & Slepian, Z.S. (2010). Dynamical evolution of thin dispersion-dominated planetesimal disks. Astron. J. 139, 565579.Google Scholar
Safronov, V.S. (1967). The protoplanetary cloud and its evolution. Sov. Astron. 10, 650.Google Scholar
shCherbak, V. & Makukov, M. (2013). The ‘‘Wow! Signal’’ of the terrestrial genetic code. Icarus 224, 228242.Google Scholar
Sussman, G.J. & Wisdom, J. (1992). Chaotic evolution of the solar system. Science 257, 5662.Google Scholar
Sussman, G.J. & Wisdom, J. (1998). Numerical evidence that the motion of Pluto is chaotic. Science 241, 433437.Google Scholar
Szuszkiewicz, E. & Papaloizou, J.C.B. (2010). Dynamical architectures of planetary systems induced by orbital migration. E.A.S. Public. Ser. 42, 303312.Google Scholar
Thommes, E.W., Matsumura, S. & Rasio, F.A. (2008). Gas disks to gas giants: Simulating the birth of planetary systems. Science 321(5890), 814817.Google Scholar
Tipler, F.J. (1980). Extra-terrestrial intelligent beings do not exist. R. Astron. Soc. 21, 267281.Google Scholar
Walker, S.I., Cisneros, L. & Davies, P.W.C. (2012). Evolutionary transitions and top down causation. Proc. Artif. Life 13, 283290.Google Scholar