Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T09:06:21.221Z Has data issue: false hasContentIssue false

Adsorption of HCN onto sodium montmorillonite dependent on the pH as a component to chemical evolution

Published online by Cambridge University Press:  12 May 2014

M. Colin-Garcia*
Affiliation:
Instituto de Geología, Universidad Nacional Autonoma de Mexico, Mexico D.F., C.P. 04510, Mexico
A. Heredia
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior s/n, Mexico D.F., C.P. 04510, Mexico
A. Negron-Mendoza
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior s/n, Mexico D.F., C.P. 04510, Mexico
F. Ortega
Affiliation:
Instituto de Geología, Universidad Nacional Autonoma de Mexico, Mexico D.F., C.P. 04510, Mexico
T. Pi
Affiliation:
Instituto de Geología, Universidad Nacional Autonoma de Mexico, Mexico D.F., C.P. 04510, Mexico
S. Ramos-Bernal
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior s/n, Mexico D.F., C.P. 04510, Mexico

Abstract

The aim of this work is to study the behaviour of hydrogen cyanide (HCN) adsorbed onto mineral surfaces (sodium montmorillonite, a clay mineral) in different pH environments as a possible prebiotic process for complexation of organics. Our experimental results show that specific sites on the surface of the clay increased the concentration of HCN molecules dependent on the pH values. Moreover, this adsorption can occur through physical and chemical interactions enhanced by the channel structure of the sodium montmorillonite. The three-dimensional channelling structure of the clay accumulates the organics, hindering the releasing (desorption) of the organic molecules. A molecular model developed here also confirms the role of the pH as a regulating factor in the adsorption of HCN onto the inorganic surfaces and the possibility for further reactions forming more complex molecules, as an abiotic mechanism important in prebiotic chemical evolution processes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, P.H. (1966). Chemical events on the primitive earth. Proc. Natl Acad. Sci. 55, 13651372.Google Scholar
Anumukonda, L.N., Young, A., Lynn, D.G., Buckley, R., Warrayat, A., Graves, C.L., Bean, H.D. & Hud, N.V. (2011). Adenine synthesis in a model prebiotic reaction: connecting origin of life chemistry with biology. J. Chem. Educ. 88, 16981701.Google Scholar
Arrhenius, T., Arrhenius, G. & Paplawsky, W. (1994). Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig. Life Evol. Biosph. 24, 117.Google Scholar
Bass, M.N. (1971). Montmorillonite and serpentine in Orgueil meteorite. Geochim. Cosmochim. Acta 35, 139147.Google Scholar
Blanton, T., Majumdar, D. & Melpolder, S. (1998). Microstructure of clay–polymer composites. In Proc. of the 47th Annual Denver X-ray Conf.. August, 1998, pp. 37.Google Scholar
Botta, O. & Bada, J. (2002). Extraterrestrial organic compounds in meteorites. Surv. Geophys. 23, 411467.Google Scholar
Brindley, G. W. & Brown, G. (1980). Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Cafferty, B.J., Gállego, I., Chen, M.C., Farley, K.I., Eritja, R. & Hud, N.V. (2013). Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. J. Am. Chem. Soc. 135, 24472450.Google Scholar
Coyne, L. (1985). A possible energetic role of mineral surfaces in chemical evolution. Orig. Life Evol. Biosph. 15, 161206.CrossRefGoogle ScholarPubMed
Ehrenfreund, P. & Charnley, S.B. (2000). Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu. Rev. Astron. Astrophys. 38, 427483.CrossRefGoogle Scholar
Ferris, J.P. (2006). Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos. Trans. R. Soc. B Biol. Sci. 361, 17771786.CrossRefGoogle ScholarPubMed
Ferris, J.P. & Hagan, W.J. (1984). HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 10931120.CrossRefGoogle ScholarPubMed
Gournis, D., Lappas, A., Karakassides, M.A., Többens, D. & Moukarika, A. (2008). A neutron diffraction study of alkali cation migration in montmorillonites. Phys. Chem. Miner. 35, 4958.Google Scholar
Guzmán, A., Negrón-Mendoza, A. & Ramos-Bernal, S. (2002). Behavior of adenine in Na-montmorillonite expose to gamma irradiation: implications to chemical evolution. Cell. Mol. Biol. 48, 525528.Google Scholar
Harder, H. (1988). Synthesis of iron-rich clays in environments with little or no oxygen. In Clay Minerals and the Origin of Life, ed. Cairns-Smith, A.G. & Hartman, H., pp. 9196. Cambridge University Press, Cambridge.Google Scholar
Hazen, R.M. (2005). Genesis: rocks, minerals, and the geochemical origin of life. Elements 1, 135137.Google Scholar
Hazen, R.M., Filley, T.R. & Goodfriend, G.A. (2001). Selective adsorption of l- and d-amino acids on calcite: implications for biochemical homochirality. Proc. Natl Acad. Sci. 98, 54875490.Google Scholar
Ip, W.H., Balsiger, H., Geiss, J., Goldstein, B.E., Kettmann, G., Lazarus, A.J., Meier, A., Rosenbauer, H. & Shelley, E. (1990). Giotto ISM measurements of the production rate of hydrogen cyanide in the coma of Comet Halley. Ann. Geophys. 8, 319325.Google Scholar
Johansson, L.E.B., Andersson, C., Ellder, J., Friberg, P., Hjalmarson, A., Hoglund, B., Irvine, W.M., Olofsson, H. & Rydbeck, G. (1984). Spectral scan of ORION-A and IRC +10216 from 72 to 91 GHz. Astron. Astrophys. 130, 227256.Google ScholarPubMed
Jung, S.H. & Choe, J.C. (2013). Mechanisms of prebiotic adenine synthesis from HCN by oligomerization in the gas phase. Astrobiology 13, 465475.Google Scholar
Katti, K.S. & Katti, D.R. (2005). Relationship of swelling and swelling pressure on silica−water interactions in montmorillonite. Langmuir 22, 532537.Google Scholar
Knapp, B., Frantal, S., Cibena, M., Schreiner, W. & Bauer, P. (2011). Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible? J. Comput. Biol. 18, 9971005.CrossRefGoogle Scholar
Li, X.Y., Hernandez, A.F., Grover, M.A., Hud, N.V. and Lynn, D.G. (2011). Step-growth control in template-directed polymerization. Heterocycles 82, 14771488.Google Scholar
López-Esquivel Kranksith, L., Negrón-Mendoza, A., Mosqueira, F.G. & Ramos-Bernal, S. (2010). Radiation-induced reactions of amino acids adsorbed on solid surfaces. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 619, 5154.CrossRefGoogle Scholar
Magee-Sauer, K., Mumma, M.J., Disanti, M.A., Russo, N.D. & Rettig, T.W. (1999). Infrared spectroscopy of the ν3 band of hydrogen cyanide in comet C/1995 O1 Hale–Bopp. Icarus 142, 498508.CrossRefGoogle Scholar
Martin, R.T. (1960). Adsorbed water on clay: a review. Clays Clay Miner. 9, 2870.Google Scholar
Matthews, H. & Sears, T. (1986). Interstellar molecular line searches at 1.5 centimeters. Astrophys. J. 300, 766772.CrossRefGoogle Scholar
Miller, S.L. (1955). Production of some organic compounds under possible primitive Earth conditions1. J. Am. Chem. Soc. 77, 23512361.Google Scholar
Miller, S.L. (1957). The formation of organic compounds on the primitive Earth. Ann. NY Acad. Sci. 69, 260275.CrossRefGoogle ScholarPubMed
Miller, S.L. & Cleaves, H.J. (2006). Prebiotic chemistry on the primitive Earth. In Systems Biology: Volume I: Genomics, eds. Rigoutsos, I. & Stephanopoulos, G., pp. 356. Oxford University Press.Google Scholar
Miyakawa, S., James Cleaves, H. & Miller, S. (2002). The cold origin of life: a. implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig. Life Evol. Biosph. 32, 195208.Google Scholar
Moore, D. & Reynolds, R.C. Jr (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University, Oxford.Google Scholar
Mukhin, L.E.V. (1974). Evolution of organic compounds in volcanic regions. Nature 251, 5051.Google Scholar
Nagendrappa, G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106138.Google Scholar
Navarro-González, R., Negrón-Mendoza, A., Aguirre-Calderón, M.E. & Ponnamperuma, C. (1989). The γ-irradiation of aqueous hydrogen cyanide in the presence of ferrocyanide or ferricyanide: implications to prebiotic chemistry. Adv. Space Res. 9, 5761.CrossRefGoogle ScholarPubMed
Oró, J. (1961). Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191, 11931194.Google Scholar
Perezgasga, L., Serrato-Díaz, A., Negrón-Mendoza, A., Galán, L.D. & Mosqueira, F.G. (2005). Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite. Orig. Life Evol. Biosph. 35, 91110.CrossRefGoogle ScholarPubMed
Plankensteiner, K., Reiner, H., Schranz, B. & Rode, B.M. (2004). Prebiotic formation of amino acids in a neutral atmosphere by electric discharge. Angew. Chem. Int. Edn 43, 18861888.CrossRefGoogle Scholar
Pontes-Buarque, M., Tessi, A.C., Bonapace, J.A.P., Monte, M.B.M., de Souza-Barros, F. & Vieyra, A. (2000). Surface charges and interfaces: implications for mineral roles in prebiotic chemistry. An. Acad. Bras. Ciênc. 72, 317322.Google Scholar
Poulet, F., Bibring, J.P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005). Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623627.CrossRefGoogle ScholarPubMed
Rimola, A., Costa, D., Sodupe, M., Lambert, J.-F. & Ugliengo, P. (2013). Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev. 113, 42164313.Google Scholar
Ross, C.S. & Hendricks, S.B. (eds) (1945). Minerals of the Montmorillonite Group, their Origin and Relation to Soils and Clays. United States Goverment Printing Office, Washington.Google Scholar
Russell, M.J. & Hall, A.J. (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. 154, 377402.Google Scholar
Saladino, R., Crestini, C., Costanzo, G. & Dimauro, E. (2005). On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. In Prebiotic Chemistry, ed. Walde, P., pp. 2968. Springer, Berlin, Heidelberg.Google Scholar
Schwartz, A.W. (1996). Did minerals perform prebiotic combinatorial chemistry? Chem. Biol. 3, 515518.Google Scholar
Sodupe, M., Rimola, A. & Ugliengo, P. (2011). Adsorción y polimerización de aminoácidos en superficies de minerales. An. Real Soc. Esp. Quím. 107, 137146.Google Scholar
Sowerby, S.J., Cohn, C.A., Heckl, W.M. & Holm, N.G. (2001). Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc. Natl Acad. Sci. 98, 820822.Google Scholar
Stevens, J.J., Anderson, S.J. & Boyd, S.A. (1996). FTIR study of competitive water-arene sorption on tetramethylammonium- and trimethylphenylammonium-montmorillonites. Clays Clay Miner. 44, 8895.Google Scholar
Stribling, R. & Miller, S. (1987). Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig. Life Evol. Biosph. 17, 261273.Google Scholar
Sugita, S. & Schultz, P.H. (2009). Efficient cyanide formation due to impacts of carbonaceous bodies on a planet with a nitrogen-rich atmosphere. Geophys. Res. Lett. 36, L20204.Google Scholar
Varma, R.S. (2002). Clay and clay-supported reagents in organic synthesis. Tetrahedron 58, 12351255.CrossRefGoogle Scholar
Vuitton, V., Yelle, R.V. & Anicich, V.G. (2006). The nitrogen chemistry of titan's upper atmosphere revealed. Astrophys. J. Lett. 647, L175.Google Scholar
Wojdyr, M. (2010). Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 11261128.Google Scholar
Xi, Y., Ding, Z., He, H. & Frost, R.L. (2005). Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 515525.Google Scholar
Zaia, D.A.M. (2004). A review of adsorption of amino acids on minerals: was it important for origin of life? Amino Acids 27, 113118.Google Scholar
Zecchina, A., Bordiga, S., Spoto, G., Marchese, L., Petrini, G., Leofanti, G. & Padovan, M. (1992). Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. J. Phys. Chem. 96, 49914997.Google Scholar