Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T02:37:30.576Z Has data issue: false hasContentIssue false

The AMINO experiment: a laboratory for astrochemistry and astrobiology on the EXPOSE-R facility of the International Space Station

Published online by Cambridge University Press:  03 November 2014

H. Cottin*
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
K. Saiagh
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
Y.Y. Guan
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
M. Cloix
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
D. Khalaf
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
F. Macari
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
M. Jérome
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
J.-M. Polienor
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
Y. Bénilan
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
P. Coll
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France Institut Universitaire de France, 103 blv St-Michel, 75005 Paris, France
N. Fray
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
M.-C. Gazeau
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
F. Raulin
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
F. Stalport
Affiliation:
LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, France
N. Carrasco
Affiliation:
Institut Universitaire de France, 103 blv St-Michel, 75005 Paris, France Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRS, LATMOS, 11 blvd d'Alembert, 78280 Guyancourt, France
C. Szopa
Affiliation:
Institut Universitaire de France, 103 blv St-Michel, 75005 Paris, France
M. Bertrand
Affiliation:
Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans Cedex 2, France
A. Chabin
Affiliation:
Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans Cedex 2, France
F. Westall
Affiliation:
Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans Cedex 2, France
J. Vergne
Affiliation:
UMR 7205- ISyEB, CNRS-MNHN-UPMC Univ Paris 06, 75005, Paris, France
L.A. Da Silva
Affiliation:
UMR 7205- ISyEB, CNRS-MNHN-UPMC Univ Paris 06, 75005, Paris, France
M.-C. Maurel
Affiliation:
UMR 7205- ISyEB, CNRS-MNHN-UPMC Univ Paris 06, 75005, Paris, France
D. Chaput
Affiliation:
Centre National d'Etudes Spatiales, Toulouse, France
R. Demets
Affiliation:
ESA ESTEC, Noordwijk, The Netherlands
A. Brack
Affiliation:
Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans Cedex 2, France

Abstract

The study of the evolution of organic matter subjected to space conditions, and more specifically to Solar photons in the vacuum ultraviolet range (120–200 nm) has been undertaken in low-Earth orbit since the 1990s, and implemented on various space platforms. This paper describes a photochemistry experiment called AMINO, conducted during 22 months between 2009 and 2011 on the EXPOSE-R ESA facility, outside the International Space Station. Samples with relevance to astrobiology (connected to comets, carbonaceous meteorites and micrometeorites, the atmosphere of Titan and RNA world hypothesis) have been selected and exposed to space environment. They have been analysed after return to the Earth. This paper is not discussing the results of the experiment, but rather gives a general overview of the project, the details of the hardware used, its configuration and recent developments to enable long-duration exposure of gaseous samples in tight closed cells enabling for the first time to derive quantitative results from gaseous phase samples exposed in space.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbier, B., Chabin, A., Chaput, D. & Brack, A. (1998). Photochemical processing of amino acids in Earth orbit. Planet. Space Sci. 46, 391398.CrossRefGoogle Scholar
Barbier, B., Henin, O., Boillot, F., Chabin, A., Chaput, D. & Brack, A. (2002). Exposure of amino acids and derivatives in the Earth orbit. Planet. Space Sci. 50, 353359.CrossRefGoogle Scholar
Bertrand, M., Chabin, A., Brack, A., Cottin, H., Chaput, D. & Westall, F. (2012). The PROCESS experiment: exposure of amino acids in the EXPOSE-E experiment on the ISS and in laboratory simulations. Astrobiology 12, 426435.CrossRefGoogle ScholarPubMed
Bertrand, M., Chabin, A., Colas, C., Cadène, M., Chaput, D., Brack, A., Cottin, H. & Westall, F. (This issue). The AMINO experiment: exposure of amino acids in the Expose -R experiment on the International Space Science and in laboratory. Int. J. Astrobiol. doi: 10.1017/S1473550414000354, published online 08 09 2014 .Google Scholar
Beuselinck, T. & Bavinchove, C.V. (2011). EXPOSE: environmental history by calculation: EXPOSE-R simulation results, REDSHIFT company. Report under ESA contract 4000102520.Google Scholar
Boillot, F., Chabin, A., Buré, C., Venet, M., Belsky, A., Bertrand-Urbaniak, M., Delmas, A., Brack, A. & Barbier, B. (2002). The perseus exobiology mission on MIR: behaviour of amino acids and peptides in earth orbit. Orig. Life 32, 359385.CrossRefGoogle ScholarPubMed
Bryson, K.L., Salama, F., Elsaesser, A., Peeters, Z., Ricco, A.J., Foing, B.H. & Goreva, Y. (This issue) First results of the ORGANIC experiment on EXPOSE-R on the ISS. Int. J. Astrobiol. Currently under review.Google Scholar
Carrasco, N., Cottin, H., Cloix, M., Bénilan, Y., Coll, P., Gazeau, M.-C., Raulin, F., Saiagh, K., Chaput, D. & Szopa, C. (This issue). The AMINO experiment: methane photolysis under solar VUV irradiation on the EXPOSE-R facility of the International Space Station. Int. J. Astrobiol. doi: 10.1017/S1473550414000238, published online 15 07 2014 .Google Scholar
Cook, A.M., Mattioda, A.L., Quinn, R.C., Ricco, A.J., Ehrenfreund, P., Bramall, Nathan E., Minelli, G., Quigley, E., Walker, R. & Walker, R. (2014). SEVO on the ground: design of a laboratory solar simulation in support of the O/OREOS mission. Astrophys. J. Suppl. 210, 15.CrossRefGoogle Scholar
Cottin, H., Gazeau, M.C., Doussin, J.F. & Raulin, F. (2000). An experimental study of the photodegradation of polyoxymethylene at 122, 147 and 193 nm. J. Photochem. Photobiol. 135, 5364.CrossRefGoogle Scholar
Cottin, H., Moore, M.H. & Bénilan, Y. (2003). Photodestruction of relevant interstellar molecules in ice mixtures. Astrophys. J. 590, 874881.CrossRefGoogle Scholar
Cottin, H. et al. (2008). Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan and Mars: in laboratory and in lower Earth orbit experiments. Adv. Space Res. 42, 20192035.CrossRefGoogle Scholar
Cottin, H. et al. (2012). The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low Earth orbit. Astrobiology 12, 412425.CrossRefGoogle ScholarPubMed
Dachev, T., Horneck, G., Häder, D.-P., Schuster, M. & Lebert, M. (This issue) EXPOSE-R cosmic radiation time profile. Int. J. Astrobiol. doi: 10.1017/S1473550414000093, published online 29 04 2014 .Google Scholar
Demets, R. et al. (This issue). Window contamination on Expose-R. Int. J. Astrobiol. doi 10.1017/S1473550414000536, currently in press.Google Scholar
Ehrenfreund, P., Charnley, S.B. & Wooden, D. (2004). From interstellar material to comet particles and molecules. In Comets II, ed. Festou, M.C., Keller, H.U. & Weaver, H.A., pp. 115133. University of Arizona Press, Tucson, Arizona, USA.CrossRefGoogle Scholar
Ehrenfreund, P., Ruiterkamp, R., Peeters, Z., Foing, B., Salama, F. & Martins, Z. (2007). The ORGANICS experiment on BIOPAN V: UV and space exposure of aromatic compounds. Planet. Space Sci. 55, 383400.CrossRefGoogle Scholar
Ehrenfreund, P. et al. (2014). The O/OREOS Mission. Astrobiology in low Earth orbit. Acta Astronaut. 93, 501508.CrossRefGoogle Scholar
Elsaesser, A. et al. (2014). Organics Exposure in Orbit (OREOcube): A Next-Generation Space Exposure Platform. Lang.CrossRefGoogle Scholar
Gans, B., Peng, Z., Carrasco, N., Gauyacq, D., Lebonnois, S. & Pernot, P. (2013). Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan's atmospheric photochemistry. Icarus 223, 330343.CrossRefGoogle Scholar
Guan, Y.Y., Fray, N., Coll, P., Macari, F., Raulin, F., Chaput, D. & Cottin, H. (2010). UVolution: compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory. Planet. Space Sci. 58, 13271346.CrossRefGoogle Scholar
Kuhn, H.J., Braslavsky, S.E. & Schmidt, R. (1989). Chemical actinometry. Pure Appl. Chem. 61, 187210.CrossRefGoogle Scholar
Mattioda, A. et al. (2012). The O/OREOS mission: first science data from the space environment viability of organics (SEVO) payload. Astrobiology 12, 841853.CrossRefGoogle ScholarPubMed
Noblet, A. et al. (2012). The PROCESS experiment: amino and carboxylic acids under Mars like surface UV radiation conditions in low Earth orbit. Astrobiology 12, 436444.CrossRefGoogle ScholarPubMed
Oro, J. & Holzer, G. (1979). The photolytic degradation and oxidation of organic compounds under simulated martian conditions. J. Mol. Evol. 14, 153160 CrossRefGoogle ScholarPubMed
Poch, O., Noblet, A., Stalport, F., Correia, J.J., Grand, N., Szopa, C. & Coll, P. (2013). Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the ‘Mars organic molecule irradiation and evolution’ (MOMIE) setup. Planet. Space Sci. 85, 188197.CrossRefGoogle Scholar
Rabbow, E. et al. (This issue). The Astrobiological Mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. doi: 10.1017/S1473550414000202, published online 26 08 2014 .Google Scholar
Saiagh, K., Cloix, M., Fray, N. & Cottin, H. (2014). VUV and Mid-UV photoabsorption cross sections of thin films of adenine: application on its photochemistry in the Solar System. Planet. Space Sci. 90, 9099.CrossRefGoogle Scholar
Saiagh, K., Cottin, H., Alean, A. & Fray, N. (Submitted). VUV and Mid-UV photoabsorption cross sections of thin films of guanine and uracil.Google Scholar
Stalport, F., Guan, Y.Y., Coll, P., Szopa, C., Macari, F., Raulin, F., Chaput, D. & Cottin, H. (2010a). ‘UV-olution, a photochemistry experiment in Low Earth Orbit’: investigation of the photostability of carboxylic acids exposed to Mars surface UV radiation conditions. Astrobiology 10, 449461.CrossRefGoogle ScholarPubMed
Stalport, F., Guan, Y.Y., Noblet, A., Coll, P., Szopa, C., Macari, F., Person, A., Raulin, F., Chaput, D. & Cottin, H. (2010b). UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carbonates exposed to Martian-like UV radiation conditions. Planet. Space Sci. 58, 16171624.CrossRefGoogle Scholar
Ten Kate, I.L., Garry, J.R.C., Peeters, Z., Quinn, R., Foing, B. & Ehrenfreund, P. (2005). Amino acid photostability on the Martian surface. Meteoritics Planet. Sci. 40, 1185.CrossRefGoogle Scholar
Thuillier, G., Floyd, L., Woods, T., Cebula, R., Hisenrath, E., Herse, M. & Labs, D. (2004a). Solar irradiance reference spectra. In Solar Variability and its Effects on Climate, ed. Pap, J.M. & Fox, P., pp. 171194. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M. & Labs, D. (2004b). Solar irradiance reference spectra for two solar active levels. Adv. Space Res. 34, 256261.CrossRefGoogle Scholar
Vergne, J., Cottin, H., Silva, L.d., Brack, A., Chaput, D., Maurel, M.-C. (This issue). The AMINO experiment: RNA stability under solar radiations on the EXPOSE-R facility of the International Space Station. Int. J. Astrobiol.Google Scholar
Vigier, F., Le Postollec, A., Coussot, G., Chaput, D., Cottin, H., Berger, T., Incerti, S., Triqueneaux, S., Dobrijevic, M. & Vandenabeele-Trambouze, O. (2013). Preparation of the Biochip experiment on the EXPOSE-R2 mission outside the International Space Station. Adv. Space Res. 52, 21682179.CrossRefGoogle Scholar
Waite, J.H., Young, D.T., Cravens, T.E., Coates, A.J., Crary, F.J., Magee, B. & Westlake, J. (2007). The process of tholin formation in Titan's upper atmosphere. Science 316, 870875.CrossRefGoogle ScholarPubMed