Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T02:18:55.616Z Has data issue: false hasContentIssue false

The AMINO experiment: exposure of amino acids in the EXPOSE-R experiment on the International Space Station and in laboratory

Published online by Cambridge University Press:  11 September 2014

Marylène Bertrand*
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France
Annie Chabin
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France
Cyril Colas
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France Univ. ORLEANS, CNRS, ICOA, UMR 7311, rue de Chartres, F-45067 Orleans, France
Martine Cadène
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France
Didier Chaput
Affiliation:
CNES, Toulouse, France
Andre Brack
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France
Herve Cottin
Affiliation:
Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général De Gaulle, F-94010 Creteil Cedex, France
Frances Westall
Affiliation:
CNRS, CBM, UPR 4301, rue Charles Sadron, F-45071 Orleans, France

Abstract

In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC–MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC–MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C.M.O., Bowden, R., Fogel, M.L., Howard, K.T., Herd, C.D.K. & Nittler, L.R. (2012). Science 337, 721723.Google Scholar
Atri, D. & Melott, A.L. (2014). Astropart. Phys. 53, 186190.Google Scholar
Barbier, B., Chabin, A., Chaput, D. & Brack, A. (1998). Planet. Space Sci. 46, 391398.CrossRefGoogle Scholar
Barbier, B., Boillot, F., Chabin, A., Venet, M., Buré, C., Jacquet, R., Bertrand-Urbaniak, M. & Brack, A. (2001). First European Workshop on Exo/Astro-Biology, Frascatti 496, 291294.Google Scholar
Bertrand, M., Chabin, A., Brack, A., Cottin, H., Chaput, D. & Westall, F. (2012). Astrobiology 12, 426435.Google Scholar
Boillot, F., Chabin, A., Bure, C., Venet, M., Belsky, A., Bertrand-Urbaniak, M., Delmas, A., Brack, A. & Barbier, B. (2002). Orig. Life Evol. Biosph. 32, 359385.CrossRefGoogle Scholar
Botta, O. & Bada, J.L. (2002). Surv. Geophys. 23, 411467.Google Scholar
Bramall, N.E., Quinn, R., Mattioda, A., Bryson, K., Chittenden, J.D., Cook, A., Taylor, C., Minelli, G., Ehrenfreund, P., Ricco, A.J. (2012). Planet. Space Sci. 60, 121130.Google Scholar
Brinton, K.L.F., Engrand, C., Glavin, D.P., Bada, J.L. & Maurette, M. (1998). Orig. Life Evol. Biosph. 28, 413424.Google Scholar
Callahan, M.P., Smith, K.E., Cleaves, H.J., Ruzicka, J., Stern, J.C., Glavin, D.P., House, C.H. & Dworkin, J.P. (2011). Proc. Natl. Acad. Sci. USA. 108, 1399513998.Google Scholar
Casal, S., Mendes, E., Fernandes, J.O., Oliveira, M. & Ferreira, M.A. (2004). J. Chromatogr. A 1040, 105114.CrossRefGoogle Scholar
Clemett, S.J., Chillier, X.D.F., Gillette, S., Zare, R.N., Maurette, M., Engrand, C. & Kurat, G. (1998). Orig. Life Evol. Biosph. 28, 425448.Google Scholar
Cody, G.D., Heying, E., Alexander, C.M.O., Nittler, L.R., Kilcoyne, A.L.D., Sandford, S.A. & Stroud, R.M. (2011). Proc. Natl. Acad. Sci. USA. 108, 1917119176.Google Scholar
Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K. & Garrel, L. (2001). Nature 414, 879883.CrossRefGoogle Scholar
Cottin, H., Guan, Y.Y., Noblet, A., Poch, O., Saiagh, K., Cloix, M., Macari, F., Jerome, M., Coll, P., Raulin, F. et al. (2012). Astrobiology 12, 412425.Google Scholar
Cronin, J.R. & Chang, S. (1993). Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. In The Chemistry of Life's Origins, ed. Greenberg, J.M., Mendoza-Gomez, C.X. & Piranello, V., pp. 209258. Kluwer Academic Publishers, Dordrecht.Google Scholar
Cronin, J.R. & Pizzarello, S. (1983). Adv. Space Res. 3, 518.CrossRefGoogle Scholar
Crovisier, J. & Bockelee-Morvan, D. (1999). Space Sci. Rev. 90, 1932.CrossRefGoogle Scholar
Dartnell, L.R., Patel, M.R., Storrie-Lombardi, M.C., Ward, J.M. & Muller, J.P. (2012). Meteorit. Planet. Sci. 47, 806819.Google Scholar
Ehrenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). Astrophys. J. 550, L95L99.Google Scholar
Elsila, J.E., Glavin, D.P. & Dworkin, J.P. (2009). Meteorit. Planet. Sci. 44, 13231330.Google Scholar
Flynn, G.J. (1996). Earth Moon Planet 72, 469474.Google Scholar
Glavin, D.P., Matrajt, G. & Bada, J.L. (2004). Re-examination of amino acids in Antarctic micrometeorites. In Space Life Sciences: Steps Toward Origin(S) of Life, ed. Bernstein, M.P., Kress, M. & Navarro Gonzalez, R., pp. 106113.Google Scholar
Guan, Y.Y., Fray, N., Coll, P., Macari, F., Chaput, D., Raulin, F. & Cottin, H. (2010). Planet. Space Sci. 58, 13271346.CrossRefGoogle Scholar
Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F., Ehresmann, B., Rafkin, S., Eigenbrode, J., Brinza, D.E., Weigle, G., Böttcher, S., Böhm, E. et al. (2014). Science 343, no. 6169.Google Scholar
Kminek, G. & Bada, J.L. (2006), Earth Planet. Sci. Lett. 245, 15.Google Scholar
Martins, Z. (2011). Elements 7, 3540.Google Scholar
Martins, Z. & Sephton, M.A. (2009). Extraterrestrial amino acids. In Amino Acids, Peptides and Proteins in Organic Chemistry. Vol. 1: Origins and Synthesis of Amino Acids, ed. Hughes, A.B., pp. 342. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
Martins, Z., Alexander, C.M.O., Orzechowska, G.E., Fogel, M.L. & Ehrenfreund, P. (2007). Meteorit. Planet. Sci. 42, 21252136.Google Scholar
Martins, Z., Price, M.C., Goldman, N., Sephton, M.A. & Burchell, M.J. (2013). Nat. Geosci. 6, 10451049.Google Scholar
Matrajt, G., Pizzarello, S., Taylor, S. & Brownlee, D. (2004). Meteorit. Planet. Sci. 39, 18491858.CrossRefGoogle Scholar
Mattioda, A., Cook, A., Ehrenfreund, P., Quinn, R., Ricco, A.J., Squires, D., Bramall, N., Bryson, K., Chittenden, J., Minelli, G. et al. (2012). Astrobiology 12, 841853.CrossRefGoogle Scholar
Mumma, M.J., DiSanti, M.A., Dello Russo, N., Magee-Sauer, K., Gibb, E. & Novak, R. (2003). Remote infrared observations of parent volatiles in comets: A window on the early solar system. In Interpretation of the Remote and in-Situ Observations of Small Bodies, ed. Worms, J.C. & Klinger, J., pp. 25632575.Google Scholar
Noblet, A., Stalport, F., Guan, Y.Y., Poch, O., Coll, P., Szopa, C., Cloix, M., Macari, F., Raulin, F., Chaput, D. & Cottin, H. (2012). Astrobiology 12, 436444.Google Scholar
Pizzarello, S. & Shock, E. (2010). Cold Spring Harbor Perspect. Biol. 2, a002105.Google Scholar
Pizzarello, S., Schrader, D.L., Monroe, A.A. & Lauretta, D.S. (2012). Proc. Natl. Acad. Sci. USA. 109, 1194911954.Google Scholar
Poupko, R., Rosentha, I. & Elad, D. (1973). Photochem. Photobiol. 17, 395402.Google Scholar
Quinn, R.C. & Zent, A.P. (1999). Orig. Life Evol. Biosph. 29, 5972.Google Scholar
Quinn, R.C., Martucci, H.F.H., Miller, S.R., Bryson, C.E., Grunthaner, F.J. & Grunthaner, P.J. (2013). Astrobiology 13, 515520.Google Scholar
Sandford, S.A., Aleon, J., Alexander, C.M.O., Araki, T., Bajt, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee, D.E., Brucato, J.R. et al. (2006). Science 314, 17201724.Google Scholar
Scappini, F., Capobianco, M.L., Casadei, F., Zamboni, R. & Giorgianni, P. (2007). Int. J. Astrobiol. 6, 281289.Google Scholar
Schummer, C., Delhomme, O., Appenzeller, B.M.R., Wennig, R. & Millet, M. (2009). Talanta 77, 14731482.Google Scholar
Sephton, M.A. (2002). Nat. Prod. Rep. 19, 292311.Google Scholar
Sephton, M.A. (2013). Geochim. Cosmochim. Acta 107, 231241.CrossRefGoogle Scholar
Shkrob, I.A., Chemerisov, S.D. & Marin, T.W. (2010). Astrobiology 10, 425436.Google Scholar
Stalport, F., Guan, Y.Y., Coll, P., Szopa, C., Macari, F., Raulin, F., Chaput, D., Cottin, H. et al. (2010). Astrobiology 10, 449461.Google Scholar
Takano, Y., Kaneko, T., Kobayashi, K., Hiroishi, D., Ikeda, H. & Marumo, K. (2004). Earth Planets Space 56, 669674.Google Scholar
ten Kate, I.L., Garry, J.R.C., Peeters, Z., Foing, B. & Ehrenfreund, P. (2006). Planet. Space Sci. 54, 296302.Google Scholar
Zent, A.P., Quinn, R.C. & Jakosky, B.M. (1994). Icarus 112, 537540.Google Scholar