Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:53:14.506Z Has data issue: false hasContentIssue false

Analysis of microbial lipids deposited on Mars Global Simulant (MGS-1) by geomatrix-assisted laser desorption/ionization-mass spectrometry

Published online by Cambridge University Press:  07 April 2021

Alef dos Santos*
Affiliation:
Laboratório de Bioquímica Micromolecular de Micro-organismos (LaBioMMi), Departamento de Química, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
Edson Rodrigues-Filho
Affiliation:
Laboratório de Bioquímica Micromolecular de Micro-organismos (LaBioMMi), Departamento de Química, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
Manoel Gustavo Petrucelli Homem
Affiliation:
Laboratório de Colisões Eletrônicas e Fotônicas (LCEF), Departamento de Química, Universidade Federal de São Carlos, 13565-905São Carlos, SP, Brazil
*
Author for correspondence: Alef dos Santos, E-mail: alef@estudante.ufscar.br

Abstract

Lipids are among the organic substances that can work as biosignatures, indicating life in an environment. We present an experimental investigation concerning analysis of lipids from a microbial source deposited on the Mars Global Simulant (MGS-1) regolith by geomatrix-assisted laser desorption/ionization-mass spectrometry (GALDI-MS). Our results indicate that lipids from intact microbial cells of a black yeast strain can be detected in these mimetic samples of Martian soil. These lipid molecules are predominantly associated with the occurrence of adducts in the GALDI-MS spectra. The results can be helpful in the planning of future planetary missions.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, SH, Park, KM, Moon, JH, Lee, SH and Kim, MS (2016) Quantification of carbohydrates and related materials using sodium ion adducts produced by matrix-assisted laser desorption ionization. Journal of the American Society for Mass Spectrometry 27, 18871890.CrossRefGoogle ScholarPubMed
Cannon, KM, Britt, DT, Smith, TM, Fritsche, RF and Batcheldor, D (2019) Mars Global Simulant MGS-1: a Rocknest-based open standard for basaltic Martian regolith simulants. Icarus 317, 470478.CrossRefGoogle Scholar
Deamer, DW and Pashley, RM (1989) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Origins of Life and Evolution of Biospheres 19, 2138.CrossRefGoogle ScholarPubMed
Fuji, T (2000) Alkali metal ion/molecule association reactions and their applications to mass spectrometry. Mass Spectrometry Reviews 18, 111138.3.0.CO;2-K>CrossRefGoogle Scholar
Ganesan, S, Shabits, BN and Zaremberg, V (2016) Tracking diacylglycerol and phosphatidic acid pools in budding yeast. Lipid Insights 8, 7585.Google ScholarPubMed
Georgiou, CD and Deamer, DW (2014) Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14, 541549.CrossRefGoogle ScholarPubMed
Knochenmuss, R and Zenobi, R (2003) MALDI ionization: the role of in-plume processes. Chemical Review 103, 441452.CrossRefGoogle ScholarPubMed
Kotler, JM, Hinman, NW, Yan, B, Stoner, DL and Scott, JR (2008) Glycine identification in natural jarosites using laser desorption Fourier transform mass spectrometry: implications for the search for life on Mars. Astrobiology 8, 253266.CrossRefGoogle ScholarPubMed
Lai, JC-Y, Pearce, BKD, Pudritz, RE and Lee, D (2019) Meteoritic abundances of fatty acids and potential reaction pathways in planetesimals. Icarus 319, 685700.CrossRefGoogle Scholar
Leopold, J, Popkova, Y, Engel, KM and Schiller, J (2018) Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8, 173.CrossRefGoogle ScholarPubMed
Li, X, Danell, RM, Brinckerhoff, WB, Pinnick, VT, Van Amerom, F, Arevalo, RD, Getty, SA, Mahaffy, PR, Steininger, H and Goesmann, F (2015) Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry. Astrobiology 15, 104110.CrossRefGoogle ScholarPubMed
Modenez, IA, Sastre, DE, Moares, FC and Marques Netto, CGC (2018) Influence of glutaraldehyde cross-linking modes on the recyclability of immobilized lipase b from Candida Antarctica for transesterification of soy bean oil. Molecules 23, 2230.CrossRefGoogle Scholar
Onofri, S, Barreca, D, Selbmann, L, Isola, D, Rabbow, E, Horneck, G, de Vera, JPP, Hatton, J and Zucconi, L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Studies in Mycology 61, 99109.CrossRefGoogle ScholarPubMed
Onofri, S, D La Torre, R, Vera, J-P, Ott, S, Zucconi, L, Selbmann, L, Scalzi, G, Venkateswaran, KJ, Rabbow, E, Inigo, FJS and Horneck, G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12, 508516.CrossRefGoogle ScholarPubMed
Onofri, S, De Vera, JP, Zucconi, L, Selbmann, L, Scalzi, G, Venkateswaran, KJ, Rabbow, E, De La Torre, R and Horneck, G (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the international space station. Astrobiology 15, 10521059.CrossRefGoogle ScholarPubMed
Price, A, Pearson, VK, Schwenzer, SP, Miot, J and Olsson-Francis, K (2018) Nitrate-dependent iron oxidation: a potential Mars metabolism. Frontiers in Microbiology 9, 513.CrossRefGoogle ScholarPubMed
Richardson, DC, Hinman, NW, McJunkin, TR, Kotler, MJ and Scott, JR (2008) Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS). Geomicrobiology Journal 25, 432440.CrossRefGoogle Scholar
Richardson, C, Hinman, NW and Scott, JR (2009) Effect of thenardite on the direct detection of aromatic amino acids: implications for the search for life in the Solar System. International Journal of Astrobiology 8, 291300.CrossRefGoogle Scholar
Röling, WFM, Aerts, JW, Patty, CHL, Ten Kate, IL, Ehrenfreund, P and Direito, SOL (2015) The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology 15, 492507.CrossRefGoogle ScholarPubMed
Santos, A and Rodrigues-Filho, E (2019) New Δ8,9-pregnene steroids isolated from the extremophile fungus Exophiala oligosperma. Natural Product Research 1, 14.CrossRefGoogle Scholar
Scalzi, G, Selbmann, L, Zucconi, L, Rabbow, E, Horneck, G, Albertano, P and Onofri, S (2012) Life experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station. Origins of Life and Evolution of Biospheres 42, 253262.CrossRefGoogle ScholarPubMed
Scott, JR, Yan, B and Stoner, DL (2006) Spatially-correlated mass spectrometric analysis of microbe–mineral interactions. Journal of Microbiological Methods 26, 381384.CrossRefGoogle Scholar
Stübiger, G, Wuczkowski, M, Mancera, L, Lopandic, K, Sterflinger, K and Belgacem, O (2016) Characterization of yeasts and filamentous fungi using MALDI lipid phenotyping. Journal of Microbiological Methods 130, 2737.CrossRefGoogle ScholarPubMed
Tan, J, Lewis, JMT and Sephton, MA (2018) The fate of lipid biosignatures in a Mars-analogue sulfur stream. Scientific Reports 8, 7586.CrossRefGoogle Scholar
Vago, JL, Westall, F, Coates, AJ, Jaumann, R, Korablev, O, Ciarletti, V, Mitrofanov, I, Josset, JL, De Sanctis, MC, Bibring, JP, Rull, F, Goesmann, F, Steininger, H, Goetz, W, Brinckerhoff, W, Szopa, C, Raulin, F, Westall, F, Edwards, HGM, Whyte, LG, Fairén, AG, Bibring, JP, Bridges, J, Hauber, E, Ori, GG, Werner, S, Loizeau, D, Kuzmin, RO, Williams, RME, Flahaut, J, Forget, F, Vago, JL, Rodionov, D, Korablev, O, Svedhem, H, Sefton-Nash, E, Kminek, G, Lorenzoni, L, Joudrier, L, Mikhailov, V, Zashchirinskiy, A, Alexashkin, S, Calantropio, F, Merlo, A, Poulakis, P, Witasse, O, Bayle, O, Bayón, S, Meierhenrich, U, Carter, J, García-Ruiz, JM, Baglioni, P, Haldemann, A, Ball, AJ, Debus, A, Lindner, R, Haessig, F, Monteiro, D, Trautner, R, Voland, C, Rebeyre, P, Goulty, D, Didot, F, Durrant, S, Zekri, E, Koschny, D, Toni, A, Visentin, G, Zwick, M, van Winnendael, M, Azkarate, M, Carreau, C and The ExoMars Project Team, (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17, 471510.CrossRefGoogle ScholarPubMed
Westall, F, Foucher, F, Bost, N, Bertrand, M, Loizeau, D, Vago, JL, Kminek, G, Gaboyer, F, Campbell, KA, Bréhéret, JG, Gautret, P and Cockell, CS (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15, 9981029.CrossRefGoogle ScholarPubMed
Wörmer, L, Elvert, M, Fuchser, J, Lipp, JS, Buttigieg, PL, Zabel, M and Hinrichs, K-U (2014) Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples. PNAS 111, 1566915674.CrossRefGoogle ScholarPubMed
Yan, B, Stoner, DL, Kotler, JM, Hinman, NW and Scott, JR (2007) Detection of biosignatures by geomatrix-assisted laser desorption/ionization (GALDI) mass spectrometry. Geomicrobiology Journal 24, 379385.CrossRefGoogle Scholar
Zakharova, K, Marzban, G, De Vera, JP, Lorek, A and Sterflinger, K (2014) Protein patterns of black fungi under simulated Mars-like conditions. Scientific Reports 4, 5114.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

dos Santos et al. supplementary material

dos Santos et al. supplementary material

Download dos Santos et al. supplementary material(PDF)
PDF 306.7 KB