Published online by Cambridge University Press: 02 April 2018
Biogenesis can be understood as the final process of the Universe's evolution, from Planck scale down to nuclear scale to atomic scale to molecular scale, then finally to bioscale, with the breaking of relevant symmetries at every step. By assuming the simplest definition of life, that life is just a molecular system which can reproduce itself (auto-reproducing molecular system – ARMS) and has such kinetic ability (kineto-molecular system), at least for its microscopic level, as to respond actively to its surrounding environments, we tried to explain the origin of life, taking the final step of the Universe evolution. We found a few clues for the origin of life, such as: (1) As the Universe expands and gets extremely cold, biogenesis can take place by ARMS, new level of stabilization may be achievable only at ‘locally cold places’ (LCPs), such as comets. (2) There must be the parity breaking in the bioscale stabilization process, which can be violated spontaneously, or dynamically by the van der Waals forces possible only at LCPs. (3) The rule of bioparity breaking is universal within the biohorizon. So we will find, e.g. only left-handed amino acids in all living beings dwelling within our Galaxy. (4) The idea of biogenesis through the bioscale stabilization in the evolution of the Universe looks very consistent with Panspermia hypothesis and supports it by providing a viable answer for life's origin at such LCPs.