Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:31:19.914Z Has data issue: false hasContentIssue false

Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects

Published online by Cambridge University Press:  28 December 2015

Chaitanya Giri*
Affiliation:
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany Institut de Chimie de Nice, University of Nice Sophia Antipolis, CNRS UMR 7272, 28 Avenue Valrose, 06108 Nice Cedex 2, France
Christopher P. McKay
Affiliation:
Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
Fred Goesmann
Affiliation:
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Nadine Schäfer
Affiliation:
Geoscience Centre, Department of Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
Xiang Li
Affiliation:
Center for Research and Exploration in Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
Harald Steininger
Affiliation:
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
William B. Brinckerhoff
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Thomas Gautier
Affiliation:
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Joachim Reitner
Affiliation:
Geoscience Centre, Department of Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany Göttingen Academy of Sciences and Humanities, Theaterstraße 7, 37073 Göttingen, Germany
Uwe J. Meierhenrich
Affiliation:
Institut de Chimie de Nice, University of Nice Sophia Antipolis, CNRS UMR 7272, 28 Avenue Valrose, 06108 Nice Cedex 2, France
*

Abstract

Astronomical observations of Centaurs and trans-Neptunian objects (TNOs) yield two characteristic features – near-infrared (NIR) reflectance and low geometric albedo. The first feature apparently originates due to complex organic material on their surfaces, but the origin of the material contributing to low albedo is not well understood. Titan tholins synthesized to simulate aerosols in the atmosphere of Saturn's moon Titan have also been used for simulating the NIR reflectances of several Centaurs and TNOs. Here, we report novel detections of large polycyclic aromatic hydrocarbons, nanoscopic soot aggregates and cauliflower-like graphite within Titan tholins. We put forth a proof of concept stating the surfaces of Centaurs and TNOs may perhaps comprise of highly ‘carbonized’ complex organic material, analogous to the tholins we investigated. Such material would apparently be capable of contributing to the NIR reflectances and to the low geometric albedos simultaneously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandurski, E.L. & Nagy, B. (1976). Geochim. Cosmochim. Acta 40, 13971406.Google Scholar
Barucci, M.A., de Bergh, C., Cuby, J.-G., Le Bras, A., Schmitt, B. & Romon, J. (2000). Astron. Astrophys. 357, 5356.Google Scholar
Bernath, P.F., Hinkle, K.H. & Keady, J.J. (1989). Science 244, 562564.Google Scholar
Bettens, R.P.A. & Herbst, E. (1997). Astrophys. J. 478, 585593.Google Scholar
Cable, M.L., Hörst, S.M., Hodyss, R., Beauchamp, P.M., Smith, M.A. & Willis, P.A. (2011). Chem. Rev. 112, 18821909.Google Scholar
Cernicharo, J., Goicoechea, J.R. & Caux, E. (2000). Astrophys. J. 534, 199202.CrossRefGoogle Scholar
Cernicharo, J., Goicoechea, J.R. & Benilan, Y. (2002). Astrophys. J. 580, 157160.CrossRefGoogle Scholar
Cochran, A.L. (1987). Astron. J. 92, 231238.Google Scholar
Coll, P., Coscia, D., Gazeau, M.-C., Guez, L. & Raulin, F. (1998). Orig. Life Evol. Biosph. 28, 195–213.CrossRefGoogle Scholar
Coll, P., Coscia, D., Smith, N., Gazeau, M-C., Ramírez, S.I., Cernogara, G., Israël, G. & Raulin, F. (1999). Planet. Space Sci. 47, 13311340.Google Scholar
Cruikshank, D. (1987). Adv. Space Res. 7, 109120.Google Scholar
Cruikshank, D.P. et al. (1998). Icarus 135, 389407.CrossRefGoogle Scholar
Cruikshank, D.P., Imanaka, H. & Dalle Ore, C.M. (2005). Adv. Space Res. 36, 178183.Google Scholar
DeMeo, F.E., Barucci, M.A., Merlin, F., Guilbert-Lepoutre, A., Alvarez-Candal, A., Delsanti, A., Fornasier, S. & de Bergh, C. (2010). Astron. Astrophys. 521, A35.CrossRefGoogle Scholar
Dorresoundiram, A., Barucci, M.A., Tozzi, G.P., Poulet, F., Boehnhardt, H., de Bergh, C. & Peixinho, N. (2005). Planet. Space Sci. 53, 15011509.Google Scholar
Dotto, E., Barucci, M.A., Leyrat, C., Romon, J., de Bergh, C. & Licandro, J. (2003a). Icarus 164, 122126.Google Scholar
Dotto, E., Barucci, M.A., Boehnhardt, H., Romon, J., Dorresoundiram, A., Peixinho, N., de Bergh, C. & Lazzarin, M. (2003b). Icarus 162, 408414.Google Scholar
Douglas, A.E. (1951). Astrophys. J. 114, 466468.Google Scholar
Ebert, L.B. (1990). Science 247, 14681471.Google Scholar
Ehrenfreund, P., Boon, J.J., Commandeur, J., Sagan, C., Thompson, W.R. & Khare, B.N. (1995). Adv. Space Res. 15, 335342.Google Scholar
Faccinetto, A., Desgroux, P., Ziskind, M., Therssen, E. & Focsa, C. (2011). Combust. Flame 158, 227239.CrossRefGoogle Scholar
Ferrari, A.C. & Robertson, J. (2000). Phys. Rev. B 61, 95107.CrossRefGoogle Scholar
Gerhardt, Ph., Löffler, S. & Homann, K.H. (1987). Chem. Phys. Lett. 137, 306310.Google Scholar
Gingerich, K.A., Finkbeiner, H.C. & Schmude, R.W. Jr. (1994). J. Am. Chem. Soc. 116, 38843888.Google Scholar
Goebel, J.H., Bregman, J.D., Strecker, D.W., Witteborn, F.C. & Erickson, E.F. (1978). Astrophys. J. 222, 129132.Google Scholar
Gomes, R., Levison, H.F., Tsiganis, K. & Morbidelli, A. (2005). Nature 435, 466469.Google Scholar
Gradie, J. & Veverka, J. (1980). Nature 283, 840841.CrossRefGoogle Scholar
Gupta, S. & Saxena, A. (2009). J. Raman Spectrosc. 40, 11271137.Google Scholar
Haddad, M.A., Zhao, D., Linnartz, H. & Ubachs, W. (2013). Proc. Int. Astron. Union 9, 297299.Google Scholar
Hammond, M.R. & Zare, R.N. (2008). Geochim. Cosmochim. Acta 72, 55215529.Google Scholar
Hansen, N., Klippenstein, S.J., Miller, J.A., Wang, J., Cool, T.A., Law, M.E., Westmoreland, P.R., Kasper, T. & Höinghaus, K.K. (2006). J. Phys. Chem. A 110, 43764388.Google Scholar
Hayatsu, R. & Anders, E. (1981). Top. Curr. Chem. 99, 137.CrossRefGoogle Scholar
Hayatsu, R., Studier, M.H. & Anders, E. (1971). Geochim. Cosmochim. Acta 35, 939951.Google Scholar
Heath, J.R. & Saykally, R.J. (1991). J. Chem. Phys. 94, 32713273.Google Scholar
Herbst, E. & Leung, C.M. (1989). Astrophys. J. 69, 271300.CrossRefGoogle Scholar
Hodyss, R., McDonald, G.D., Sarker, N., Smith, M.A., Beauchamp, P.A. & Beauchamp, J.L. (2004). Icarus 171, 525530.Google Scholar
Honig, R.E. (1954). J. Chem. Phys. 22, 126131.Google Scholar
Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T. & Zare, R.N. (2004). Icarus 168, 344366.Google Scholar
Kawai, J., Jagota, S., Kaneko, T., Obayashi, Y., Yoshimura, Y., Khare, B.N., Deamer, D.W., McKay, C.P. & Kobayashi, K. (2013). Int. J. Astrobiol. 12, 282291.Google Scholar
Kerridge, J.F. (1999). Space Sci. Rev. 90, 275288.Google Scholar
Khare, B.N. et al. (1984). Adv. Space Res. 4, 5968.Google Scholar
Khare, B.N., Sagan, C., Ogino, H., Nagy, B., Er, C., Schram, K.H. & Arakawa, E.T. (1986). Icarus 68, 176184.Google Scholar
Khare, B.N., Thompson, W.R., Chyba, C.F., Arakawa, E.T. & Sagan, C. (1989). Adv. Space Res. 9, 4153.Google Scholar
Khare, B.N., Thompson, W.R., Cheng, L., Chyba, C., Sagan, C., Arakawa, E.T., Meisse, C. & Tuminello, P.S. (1993). Icarus 103, 290300.Google Scholar
Kousoku, A., Ashida, R., Miyasato, A., Miyake, M. & Miura, K. (2014). Proc. of the 24th Saudi–Japan Annual Symp. Catalysts in Petroleum Refining & Petrochemicals, KFUPM, Dhahran, Saudi Arabia, 1–2 December, 2014.Google Scholar
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. & Smalley, R.E. (1985). Nature 318, 162163.Google Scholar
Kwok, S. (2009). Astrophys. Space Sci. 319, 521.Google Scholar
McDonald, G.D., Thompson, W.R., Heinrich, M., Khare, B.N. & Sagan, C. (1994). Icarus 108, 137145.Google Scholar
McDonald, G.D., Whited, L.D., DeRuiter, C., Khare, B.N., Patnaik, A. & Sagan, C. (1996). Icarus 122, 107117.Google Scholar
McGuigan, M., Waite, J.H., Imanaka, H. & Sacks, R.D. (2006). J. Chromatogr. A 1132, 280288.Google Scholar
McKay, C.P. (1996). Planet. Space Sci. 44, 741747.Google Scholar
Nemanich, R.J. & Solin, S.A. (1977). Solid State Commun. 23, 417420.CrossRefGoogle Scholar
Pogodin, S. & Agranat, I. (2001). Polycyl. Aromat. Compd. 18, 247263.Google Scholar
Quirico, E. et al. (2008). Icarus 198, 218231.Google Scholar
Ramírez, S.I., Navarro-González, R., Coll, P. & Raulin, F. (2005). Adv. Space Res. 36, 274280.Google Scholar
Richter, H. & Howard, J.B. (2000). Prog. Energy Combust. Sci. 26, 565608.Google Scholar
Sagan, C. & Khare, B.N. (1979). Nature 277, 102107.Google Scholar
Sagan, C., Khare, B.N., Thompson, W.R., McDonald, G.D., Wing, M.R., Bada, J.L., Vo-Dinh, T. & Arakawa, E.T. (1993). Astrophys. J. 414, 399405.Google Scholar
Sato, Y., Kamo, M. & Setaka, N. (1978). Carbon 16, 279280.Google Scholar
Sowerby, S.J., Cohn, C.A., Heckl, W.M. & Holm, N.G. (2001). Proc. Natl. Acad. Sci. USA 98, 820822.Google Scholar
Studier, M.H., Hayatsu, R. & Anders, E. (1972). Geochim. Cosmochim. Acta 36, 189215.Google Scholar
Suzuki, B., Kurihara, H. & Watanabe, J. (1990). Publ. Astron. Soc. Japan 42, 9397.Google Scholar
Trainer, M.G., Pavlov, A.A., Jimenez, J.L., McKay, C.P., Worsnop, D.R., Toon, O.B. & Tolbert, M.A. (2004). Geophys. Res. Lett. 31, L17S08, doi: 10.1029/2004GL019859.Google Scholar
Vidano, R. & Fischbach, D.B. (1978). J. Am. Ceram. Soc. 61, 1317.Google Scholar