Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T03:51:39.832Z Has data issue: false hasContentIssue false

A case for landing on the moon's farside to test nitrogen abundances

Published online by Cambridge University Press:  29 November 2011

J. Chela-Flores
Affiliation:
The Abdus Salam ICTP, I-34151, Trieste, Italy and Instituto de Estudios Avanzados, Caracas, República Bolivariana de Venezuela e-mail: chelaf@ictp.it

Abstract

A high research priority in astrobiology is the search and eventual identification of biomarkers in the Solar System. In spite of numerous steps forward, lunar science remains largely disjoint from the main stream of astrobiology, but in recent years the Moon has begun to emerge as a novel target for astrobiologists. We discuss an overlap between lunar geology and terrestrial geomicrobiology that arises from analysis of lunar soils and some uncertainties in chemical evolution and the origin of life scenarios. Unexpected isotopic heterogeneity of nitrogen (N) was found to be remarkable in samples from Apollo and the Luna programme. Both the stable isotope geochemical data of the biogenic elements, as well as the noble gases trapped in lunar soils added valuable new and relevant data. These discoveries are potential sources of information on early Earth evolution. The elusive ratio of N's two stable isotopes 15N/14N has played a fundamental role in this research. The analysis of individual grains of ilmenite suggests that 90% of all the trapped N does not originate from solar wind (SW). We discuss the significance of these stable isotopes from the point of view of astrobiology in the light of the next generation of lunar exploration. We underline the high priority of testing the origin of non-solar N source trapped in the regolith of the lunar farside. In the proposals of new lunar missions, the characterization of the geochemistry at several lunar sites is a major objective. Some arguments are presented in favour of using novel space technologies in a search for biomarkers in geographical distinct lunar landing sites. We restrict our attention to one aspect of the science requirements for the forthcoming missions by focusing on a very limited objective: to take a closer look at the geochemical characterization of the chemical element N on the soils of the lunar farside.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. & Grevesse, N. (1989). Abundances of the elements – meteoritic and solar. Geochim. Cosmochim. Acta 53, 197214.CrossRefGoogle Scholar
Bagenal, F. (2009). Comparative planetary environments. In Heliophysics: Plasma Physics of the Local Cosmos, ed. Schrijver, C.J. & Siscoe, G.L., pp. 360398. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Battistuzzi, F., Feijao, U. & Hedges, S.B. (2004). A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. MC Evol. Biol. 4, 4460.Google ScholarPubMed
Bernatowicz, T., Amari, S., Zinner, E. & Lewis, R. (1991). Presolar grains within presolar grains. Astrophys. J. Lett. 373, L73.CrossRefGoogle Scholar
Brocks, J.J., Logan, G.A. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.CrossRefGoogle ScholarPubMed
Buffet, B.A. (2003). The thermal state of the Earth's core. Science 299, 16751677.CrossRefGoogle Scholar
Buffett, G.A. (2000). Earth core and the geodynamo. Science 288, 20072012.CrossRefGoogle ScholarPubMed
Callahan, M.P., Smith, K.E., Cleaves, H.J. II, Ruzicka, J., Stern, J.C., Glavin, D.P., House, C.H. & Dworkin, J.P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. U.S.A. 108, 1399513998.CrossRefGoogle ScholarPubMed
Chela-Flores, J. (2006). The sulphur dilemma: are there biosignatures on Europa's icy and patchy surface? Int. J. Astrobiol. 5, 1722 (copyright holder: Cambridge University Press; http://www.ictp.it/~chelaf/sulphurdilemma.pdf).CrossRefGoogle Scholar
Chela-Flores, J. (2010). Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int. J. Astrobiol. 9, 101108 (http://www.ictp.it/~chelaf/jcf_IJA_2010.pdf).CrossRefGoogle Scholar
Chela-Flores, J. (2011). The Science of Astrobiology A Personal Point of View on Learning to Read the Book of Life, 2nd edn, Book Series: Cellular Origin, Life in Extreme Habitats and Astrobiology, Springer, Dordrecht, The Netherlands, Chapter 4, especially p. 86. http://www.ictp.it/~chelaf/ss220.html.CrossRefGoogle Scholar
Chela-Flores, J., Owen, T. & Raulin, F. (eds) (2001). The First Steps of Life in the Universe. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Chela-Flores, J. & Raulin, F. (eds) (1998). Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Clayton, R.N., Grossman, L. & Mayeda, T.K. (1973a). A component of primitive nuclear composition in carbonaceous chondrites. Science 182, 485488.CrossRefGoogle Scholar
Clayton, R.N., Hurd, J.M. & Mayeda, T.K. (1973b). Oxygen isotopic compositions of Apollo 15, 16, and 17 samples, and their bearing on lunar origin and petrogenesis. Proc. Lunar Sci. Conf. 4, 15351542.Google Scholar
Crawford, I.A., Baldwin, C., Taylor, E.A., Bailey, J.A. & Tsembelis, K. (2008). On the survivability and detectability of terrestrial meteorites on the Moon. Astrobiology 8, 242252.CrossRefGoogle ScholarPubMed
Crawford, I.A., Fagents, S.A. & Joy, K.H. (2007). Full Moon exploration. Astron. Geophys. 48, 3.183.21.CrossRefGoogle Scholar
Crawford, I.A., Fagents, S.A., Joy, K.H. & Rumpf, M.E. (2010). Lunar palaeoregolith deposits as recorders of the galactic environment of the solar system and implications for astrobiology. Earth Moon Planets 107, 7585.CrossRefGoogle Scholar
Dahmen, G., Wilson, T.L. & Matteucci, F. (1993). The nitrogen isotope abundance in the galaxy. 1: The galactic disk gradient. Astron. and Astrophys. 295, 194198.Google Scholar
Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S. & Buseck, P.R. (1996). Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60(23), 48534872.CrossRefGoogle Scholar
Dunlop, D. (2007). A more ancient shield. Nature 446, 623625.CrossRefGoogle ScholarPubMed
Fegley, B. Jr. (1993). Chemistry of the Solar Nebula. In The Chemistry of Life's Origin, ed. Greenberg, J.M., Mendoza-Gomez, C.X. & Pirronello, V., pp. 75147. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Fischer, T.P., Hilton, D.R., Zimmer, M.M., Shaw, A.M., Sharp, Z.D. & Walker, J.A. (2002). Subduction and recycling of nitrogen along the Central American margin. Science 297, 11541157.CrossRefGoogle ScholarPubMed
Frank, H.A. & Cogdell, R.J. (1996). Carotenoids in photosynthesis. Photochem. Photobiol. 63, 257264.CrossRefGoogle ScholarPubMed
Gibson, E.K. Jr. & Chang, S. (1992). The Moon: Biogenic elements. In Exobiology in Solar System Exploration, ed. Carle, G.C., Schwartz, D.E. & Huntington, J.L., vol. 512, pp. 2943. NASA Ames Research Center Moffett Field, CA, USA.Google Scholar
Glazer, A.N. (1985). Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 4777.CrossRefGoogle ScholarPubMed
Gleeson, D., Pappalardo, R.T., Grasby, S.E., Anderson, M.S., Beauchamp, B., Castano, R., Chien, S., Doggett, T., Mandrake, L. & Wagstaff, K. (2010). Characterization of a sulfur-rich, Arctic spring site and field analog of Europa using hyperspectral data. Remote Sens. Environ. 114, 12971311.CrossRefGoogle Scholar
Gowen, R.A., Smith, A., Fortes, A.D., Barber, S., Brown, P., Church, P., Collinson, G., Coates, A.J., Collins, G., Crawford, I.A. et al. (2011). Penetrators for in situ sub-surface investigations of Europa. Adv. Space Res. 48, 725742 (http://www.ictp.it/~chelaf/1ScienceDirect.pdf).CrossRefGoogle Scholar
Halliday, A.N. (2000). Terrestrial accretion rates and the origin of the Moon. Earth Planet. Sci. Lett. 176, 1730.CrossRefGoogle Scholar
Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. (2000). Solar wind record on the Moon: deciphering presolar from planetary nitrogen. Science 290, 11421145.CrossRefGoogle ScholarPubMed
Heiken, G.H., Vaniman, D.T. & French, B.M. (1991). The Lunar Sourcebook. Cambridge University Press, Cambridge.Google Scholar
Hoefs, J. (2009). Stable Isotope Geochemistry. Springer, Dordrecht, The Netherlands p. 93.Google Scholar
Jolliff, B.L., Wieczorek, M.A., Shearer, C.K. & Neal, C.R. (eds) (2006). New Views of the Moon. Reviews in Mineralogy and Geochemistry , vol. 60, Minerological Society of America, Chantilly, VA, 721 pp.CrossRefGoogle Scholar
Jutzi, M. & Asphaug, E. (2011). Forming the lunar farside highlands by accretion of a companion Moon. Nature 476, 6972.CrossRefGoogle ScholarPubMed
Kaplan, I.R. (1975). Stable isotopes as a guide to biogeochemical processes. Proc. R. Soc. Lond. B 189, 183211 (cf. pp. 202–205).Google Scholar
Kasting, J.F. (1982). Stability of ammonia in the primitive terrestrial atmosphere. J. Geophys. Res. 87, 30913098.CrossRefGoogle Scholar
Kasting, J.F. (1987). Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205229.CrossRefGoogle ScholarPubMed
Kasting, J.F. (1993). Early evolution of the atmosphere and ocean. In The Chemistry of Life's Origin, ed. Greenberg, J.M., Mendoza-Gomez, C.X. & Pirronello, V., pp. 149176. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Kasting, J.F. & Ackerman, T.P. (1986). Climate consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science 234, 13831385.CrossRefGoogle ScholarPubMed
Kerridge, J.F. (1975). Solar nitrogen: evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14. Science 18, 162164.CrossRefGoogle Scholar
Kerridge, J.F. (1993). Long-term compositional variation in solar corpuscular radiation – evidence from nitrogen isotopes in the lunar regolith. Rev. Geophys. 31, 423437.CrossRefGoogle Scholar
Knauth, L.P. & Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566580.2.0.CO;2>CrossRefGoogle Scholar
Kuhn, W.R. & Atreya, S.K. (1979). Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus, 37, 207213.CrossRefGoogle Scholar
Mather, T.A., Pyle, D.M. & Allen, A.G. (2004). Volcanic source for fixed nitrogen in the early Earth's atmosphere. Geology 32, 905908.CrossRefGoogle Scholar
Messerotti, M. & Chela-Flores, J. (2009). Solar activity and life. A Review. Acta Geophysica 57(1), 6474 (http://www.ictp.it/~chelaf/MesserottiJCF.pdf).CrossRefGoogle Scholar
Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K. & Takahashi, E. (2004). Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochim. Cosmochim. Acta 68, 387401.CrossRefGoogle Scholar
Nisbet, E.G. (2000). The realms of Archaean life. Nature 405, 625626.CrossRefGoogle ScholarPubMed
Nisbet, E.G. & Sleep, N.H. (2001). The habitat and nature of early life. Nature 409, 10831091.CrossRefGoogle ScholarPubMed
Owen, T., Mahaffy, P.R., Niemann, H.B., Atreya, S. & Wong, M. (2001). Protosolar nitrogen. Astrophys. J. 55, L77L79.CrossRefGoogle Scholar
Ozima, M., Seki, K., Terada, N., Miura, Y.N., Podosek, F.A. & Shinagawa, H. (2005). Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655659.CrossRefGoogle ScholarPubMed
Ozima, M., Yin, Q.-Z., Podosek, F.A. & Miura, Y.N. (2008). Toward understanding early Earth evolution: prescription for approach from terrestrial noble gas and light element records in lunar soils. Proc. Natl. Acad. Sci. USA 105(46), 1765417658.CrossRefGoogle ScholarPubMed
Ponnamperuma, C. & Chela-Flores, J. (eds) (1995). Chemical Evolution: The Structure and Model of the First Cell . Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Ponnamperuma, C. & Chela-Flores, J. (Guest Editors) (1994). J. Biol. Phys. 120(1–4).Google Scholar
Prombo, C.A. & Clayton, R.N. (1985). A striking isotope nitrogen anomaly in the Bencubbin and Weatherford meteorites. Science 230, 935937.CrossRefGoogle ScholarPubMed
Rohner, U., Whitby, J.A. & Wurz, P. (2004). Highly miniaturized laser ablation time-of-flight mass spectrometer for a planetary rover. Rev. Sci. Instrum. 75, 13141322.CrossRefGoogle Scholar
Rollinson, H.R. (2007). Chapter 5: The Origin of the Earth's Atmosphere and Oceans. In Early Earth Systems: A Geochemical Approach. pp. 184186. Blackwell Publishing, Oxford, UK.Google Scholar
Rosman, J.R. & Taylor, P.D. (1998). Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure Appl. Chem. 70, 217235.CrossRefGoogle Scholar
Schopf, J.W. (1999). Chapter 6: So far, So fast, so early? In Cradle of Life. pp. 171174. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Schultz, P.H. & Crawford, D. (2011). Origin of nearside structural and geochemical anomalies on the Moon. In Recent Advances and Current Research Issues in Lunar Stratigraphy, ed. Ambrose, W.A. & Williams, D.A., pp. 141159, Geological Society of America, Special Paper 477, Boulder Co, USA.Google Scholar
Sleep, N., Zahnle, K., Kasting, J. & Morowitz, H. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139142.CrossRefGoogle ScholarPubMed
Smith, A., Crawford, I.A., Gowen, R.A., Ambrosi, R., Anand, M., Banerdt, B., Bannister, N., Bowles, N., Braithwaite, C., Brown, P. et al. (2011). Lunar Net – A proposal in response to an ESA M3 call in 2010 for a medium sized mission. Exp. Astron, published online 1 September doi:10.1007/s10686-011-9250-5.Google Scholar
Stribling, R. & Miller, S.L. (1987). Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN an and amino acid concentrations in the primitive ocean. Orig. Life 17, 261273.CrossRefGoogle Scholar
Tarduno, J.A., Cottrell, R.D., Watkeys, M.K. & Bauch, D. (2007). Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657660.CrossRefGoogle ScholarPubMed
Tulej, M., Iakovleva, M., Leya, I. & Wurz, P. (2011). A miniature mass analyser for in-situ elemental analysis of planetary material-performance studies. Anal. Bioanal. Chem. 399(6), 21852200.CrossRefGoogle ScholarPubMed
Wiechert, U., Halliday, A.N., Lee, D.-C., Snyder, G.A., Taylor, L.A. & Rumble, D. (2001). Oxygen isotopes and the Moon-forming giant impact. Science 294, 345348.CrossRefGoogle ScholarPubMed
Wieler, R., Humbert, F. & Marty, B. (1999). Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analysis. Earth Planet. Sci. Lett. 167, 4760.CrossRefGoogle Scholar
Wieler, R., Kehm, K., Meshik, A.P. & Hohenberg, C.M. (1996). Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains. Nature 384, 4649.CrossRefGoogle Scholar
Wilde, S.A., Valley, J.W., Peck, W.H. & Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175178.CrossRefGoogle ScholarPubMed
Zhang, Y. & Zindler, A. (1993). Distribution and evolution of carbon and nitrogen in the Earth. Earth Planet. Sci. 117, 331345.CrossRefGoogle Scholar