Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:19:07.640Z Has data issue: false hasContentIssue false

Climate modelling of mass-extinction events: a review

Published online by Cambridge University Press:  27 July 2009

Georg Feulner
Affiliation:
Potsdam-Institut für Klimafolgenforschung (PIK), P.O. Box 60 12 03, D–14412 Potsdam, Germany e-mail: feulner@pik-potsdam.de

Abstract

Despite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L.W., Alvarez, W., Asaro, F. & Michel, H.V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208(4448), 10951108.CrossRefGoogle ScholarPubMed
Bailer-Jones, C. (2009). The evidence for and against astronomical impacts on climate change and mass extinctions: A review. Int. J. Astrobiol. 8(3).CrossRefGoogle Scholar
Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127155.CrossRefGoogle Scholar
Bambach, R.K., Knoll, A.H. & Wang, S.C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology 30(4), 522542.2.0.CO;2>CrossRefGoogle Scholar
Claussen, M. et al. (2002). Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dynam. 18(7), 579586.Google Scholar
Covey, C., Thompson, S.L., Weissman, P.R. & MacCracken, M.C. (1994). Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Global Planet. Change 9(3–4), 263273.CrossRefGoogle Scholar
Crowley, T.J. & North, G.R. (1988). Abrupt climate change and extinction events in Earth history. Science 240(4855), 9961002.CrossRefGoogle ScholarPubMed
Ellis, J. & Schramm, D.N. (1995). Could a nearby supernova explosion have caused a mass extinction? In Proc. of the National Academy of Sciences of the United States of America 92(1), 235238.CrossRefGoogle Scholar
Hotinski, R.M., Bice, K.L., Kump, L.R., Najjar, R.G. & Arthur, M.A. (2001). Ocean stagnation and end-Permian anoxia. Geology 29(1), 710.2.0.CO;2>CrossRefGoogle Scholar
Hotinski, R.M., Kump, L.R. & Bice, K.L. (2002). Comment on ‘“Could the late Permian deep ocean have been anoxic?” by R. Zhang et al.’ Paleoceanography 17(4), 2.CrossRefGoogle Scholar
Huynh, T.T. & Poulsen, C.J. (2005). Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeogr. Palaeocl. 217(3–4), 223242.CrossRefGoogle Scholar
Kiehl, J.T. & Shields, C. (2005). Climate simulation of the latest Permian: Implications for mass extinction. Geology 33(9), 757760.CrossRefGoogle Scholar
Kring, D.A. (2007). The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeocl. 255(1–2), 421.CrossRefGoogle Scholar
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3(01), 5561.CrossRefGoogle Scholar
North, G.R. & Stevens, M.J. (2006). Energy-balance climate models. In Frontiers of Climate Modelling, eds Kiehl, J.T. & Ramanathan, V., pp. 5272. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pope, K.O., Baines, K.H., Ocampo, A.C. & Ivanov, B.A. (1994). Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth. Planet. Sci. Lett. 128(3–4), 719725.CrossRefGoogle Scholar
Pope, K.O., Baines, K.H., Ocampo, A.C. & Ivanov, B.A. (1997). Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res. 102(E9), 21 64521 664.CrossRefGoogle ScholarPubMed
Randall, D.A. et al. (2007). Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds Solomon, S., Qin, D., Manning, M. et al. Cambridge University Press, Cambridge.Google Scholar
Raup, D.M. & Sepkoski, J.J.J. (1982). Mass Extinctions in the Marine Fossil Record. Science 215(4539), 15011503.CrossRefGoogle ScholarPubMed
Saltzmann, B. (2002). Dynamical Paleoclimatology – Generalized Theory of Global Climate Change. Academic Press, San Diego.Google Scholar
Self, S. (2005). Effects of volcanic eruptions on the atmosphere and climate. In Volcanoes and the Environment, eds Martí, J. & Ernst, G.G.J., pp. 152174. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P. & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 35(1), 4178.CrossRefGoogle Scholar
Twitchett, R.J. (2006). The palaeoclimatology, palaeoecology and palaeo environmental analysis of mass extinction events. Palaeogeogr. Palaeocl. 232(2–4): 190213.CrossRefGoogle Scholar
Ward, P.D. (2007). Mass extinctions. In Planets and Life, eds Sullivan, W.T. III & Baross, J.A., pp. 335354. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
White, R.V. (2002). Earth's biggest ‘whodunnit’: unravelling the clues in the case of the end-Permian mass extinction. Philos. T. Roy. Soc. A 360(1801), 29632985.CrossRefGoogle ScholarPubMed
Wignall, P.B. (2005). Volcanism and mass extinctions. In Volcanoes and the Environment, eds Martí, J. & Ernst, G.G.J., pp. 207226. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Winguth, A.M.E. & Maier-Reimer, E. (2005). Causes of the marine productivity and oxygen changes associated with the Permian–Triassic boundary: a reevaluation with ocean general circulation models. Mar. Geol. 217(3–4), 283304.CrossRefGoogle Scholar
Winguth, A.M.E., Heinze, C., Kutzbach, J.E., Maier-Reimer, E., Mikolajewicz, U., Rowley, D., Rees, A. & Ziegler, A.M. (2002). Simulated warm polar currents during the middle Permian. Paleoceanography 17(4), 1057.CrossRefGoogle Scholar
Zhang, R., Follows, M.J., Grotzinger, J.P. & Marshall, J. (2001). Could the late Permian deep ocean have been anoxic? Paleoceanography 16(3), 317329.CrossRefGoogle Scholar
Zhang, R., Follows, M.J. & Marshall, J. (2003). Reply to Comment by Roberta M. Hotinski, Lee R. Kump, and Karen L. Bice on ‘Could the Late Permian deep ocean have been anoxic?’. Paleoceanography 18(4), 1095.CrossRefGoogle Scholar