Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T17:05:52.589Z Has data issue: false hasContentIssue false

Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate

Published online by Cambridge University Press:  14 March 2017

Adrian L. Melott*
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
Anthony Pivarunas
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611, USA
Joseph G. Meert
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611, USA
Bruce S. Lieberman
Affiliation:
Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS 66045, USA
*

Abstract

The record of reversals of the geomagnetic field has played an integral role in the development of plate tectonic theory. Statistical analyses of the reversal record are aimed at detailing patterns and linking those patterns to core–mantle processes. The geomagnetic polarity timescale is a dynamic record and new paleomagnetic and geochronologic data provide additional detail. In this paper, we examine the periodicity revealed in the reversal record back to 375 million years ago (Ma) using Fourier analysis. Four significant peaks were found in the reversal power spectra within the 16–40-million-year range (Myr). Plotting the function constructed from the sum of the frequencies of the proximal peaks yield a transient 26 Myr periodicity, suggesting chaotic motion with a periodic attractor. The possible 16 Myr periodicity, a previously recognized result, may be correlated with ‘pulsation’ of mantle plumes and perhaps; more tentatively, with core–mantle dynamics originating near the large low shear velocity layers in the Pacific and Africa. Planetary magnetic fields shield against charged particles, which can give rise to radiation at the surface and ionize the atmosphere, which is a loss mechanism particularly relevant to M stars. Understanding the origin and development of planetary magnetic fields can shed light on the habitable zone.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atri, D. (2013). Did high-energy astrophysical sources contribute to Martian atmospheric loss? Mon. Not. R. Astron. Soc. Lett. 463, L64L68. doi: 10.1093/mnrasl/slw155.Google Scholar
Atri, D. (2017). Modeling stellar proton event-induced particle radiation dose on close-in exoplanets. Mon. Not. R. Astron. Soc. Lett. 465, L34L38. doi: 10.1093/mnrasl/slw199.Google Scholar
Atri, D., Hariharan, B. & Greiβmeier, J. (2013). Galactic cosmic-ray induced radiation dose on terrestrial exoplanets. Astrobiology 13, 910919.Google Scholar
Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., van der Meer, D.G. & van Hinsbergen, D.J.J. (2012). Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nat. Geosci. 5, 526533.Google Scholar
Black, D.I. (1967). Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth Planet. Sci. Lett. 3, 225236.Google Scholar
Bloomfield, P. (2000). Fourier Analysis of Time Series: an Introduction, 2nd edn. John Wiley & Sons, Wiley Interscience Publications, New York, NY.CrossRefGoogle Scholar
Brigham, E. (1988). The Fast Fourier Transform and its Applications. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
Carbone, V., Sorriso-Valvo, L., Vecchio, A., Lepreti, F., Veltri, P., Harabaglia, P. & Guerra, I. (2006). Clustering of polarity reversals of the geomagnetic field. Phys. Rev. Lett. 96, 128501.Google Scholar
Constable, C. (2000). On rates of occurrence of geomagnetic reversals. Phys. Earth Planet. Inter. 118, 181193.CrossRefGoogle Scholar
Cooley, J.W. & Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 297301.Google Scholar
Courtillot, V. & Besse, J. (1987). Magnetic field reversals, polar wander, and core-mantle coupling. Science 237, 11401147.CrossRefGoogle ScholarPubMed
Cox, A.V., Doell, R.R. & Dalrymple, G.B. (1963a). Geomagnetic polarity epochs and Pleistocene geochronometry. Nature 198, 10491051.Google Scholar
Cox, A.V., Doell, R.R. & Darymple, G.B. (1963b). Geomagnetic polarity epochs – Sierra Nevada II. Science 142, 382385.Google Scholar
Cox, A., Doell, R.R. & Darymple, G.B. (1964). Geomagnetic polarity epochs. Science 143, 351352.Google Scholar
Driscoll, P.E. & Evans, D.A.D. (2016). Frequency of Proterozoic geomagnetic superchrons. Earth Planet. Sci. Lett. 437, 914.CrossRefGoogle Scholar
Gallet, Y. & Pavlov, V.E. (2016). Three distinct reversing modes in the geodynamo. Izv. Phys. Solid Earth 52, 291296.Google Scholar
Glassmeier, K. & Vogt, J. (2010). Magnetic polarity transitions and biospheric effects: historical perspective and current developments. Space Sci. Rev. 155, 387410.CrossRefGoogle Scholar
Hansma, J. et al. (2015). Late Devonian carbonate magnetostratigraphy from the Oscar and horse spring ranges. Leonard Shelf, Canning Basin, Western Australia. Earth Planet. Sci. Lett. 40, 232242.Google Scholar
Hays, J.D. (1971). Faunal extinctions and reversals of the earth's magnetic field. Geol. Soc. Am. Bull. 82, 24332447.Google Scholar
Herbst, K., Kopp, A. & Heber, B. (2013). Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles. Ann. Geophys. 31, 16371643.CrossRefGoogle Scholar
Kendall, B.E., Schaffer, W.M. & Tidd, C.S. (1993). Transient periodicity in chaos. Phys. Lett. A 177, 1320.Google Scholar
Larson, R.L. (1991). Geological consequences of superplumes. Geology 19, 963966.2.3.CO;2>CrossRefGoogle Scholar
Larson, R.L. & Olson, P. (1991). Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett. 107, 437447.Google Scholar
Lay, T., Hernlund, J. & Buffett, B.A. (2008). Core-mantle boundary heat flow. Nat. Geosci. 1, 2532.Google Scholar
Lieberman, B.S. & Melott, A.L. (2007). Considering the case for biodiversity cycles: reexamining the evidence for periodicity in the fossil record. PLoS ONE 2, 19.CrossRefGoogle ScholarPubMed
Lieberman, B.S. & Melott, A.L. (2012). Whilst this planet goes cycling on: what role for periodic astronomical phenomena in large scale patterns in the history of life? In Earth and Life: Global Biodiversity, Extinction Intervals, and Biogeographic Perturbations through Time, International Year of Planet Earth, ed. Talent, J., pp. 3750. Springer, Berlin.Google Scholar
Loper, D.E., McCartney, K. & Buzyna, G. (1988). A model of correlated episodicity in magnetic-field reversals, climate, and mass extinctions. J. Geol. 96, 115.Google Scholar
Lutz, T.M. (1985). The magnetic reversal record is not periodic. Nature 317, 404407.Google Scholar
Lutz, T.M. & Watson, G.S. (1988). Effects of long-term variation on the frequency spectrum of the geomagnetic reversal record. Nature 334, 240242.Google Scholar
Madrigal, P., Gazel, E., Flores, K.E., Bizimis, M. & Jicha, B. (2016). Record of massive upwellings from the Pacific low shear velocity province. Nat. Commun. 7, 13309. doi: 10.1038/ncomms13309.Google Scholar
Marzocchi, W. & Mulargia, F. (1992). The periodicity of geomagnetic reversals. Phys. Earth Planet. Inter. 73, 222228.Google Scholar
Mazaud, A. & Laj, C. (1991). The 15 m.y. geomagnetic reversal periodicity: a quantitative test. Earth Planet. Sci. Lett. 107, 689696.Google Scholar
Mazaud, A., Laj, C., de Seze, L. & Verosub, K.L. (1983). 15-Myr periodicity in the frequency of geomagnetic reversals since 100 Ma. Nature 304, 328330.Google Scholar
McCabe, C. & Elmore, R.D. (1989). The occurrence and origin of Late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys. 27, 471494.Google Scholar
McFadden, P.L. (1984a). Statistical tools for the analysis of geomagnetic reversals. J. Geophys. Res. 89, 33633372.CrossRefGoogle Scholar
McFadden, P.L. (1984b). 15-Myr periodicity in the frequency of geomagnetic reversals since 100 Ma. Nature 311, 396.Google Scholar
McFadden, P.L. (1987). “A periodicity of magnetic reversals?” Comment by P.L. McFadden. Nature 330, 27.Google Scholar
McFadden, P.L. & Merrill, R.T. (1984). Lower mantle convection and geomagnetism. J. Geophys. Res. 89, 33543362.Google Scholar
McFadden, P.L., Merrill, R.T., Lowrie, W. & Kent, D.V. (1987). The relative stabilities of the reverse and normal polarity states of the earth's magnetic field. Earth Planet. Sci. Lett. 82, 373383.CrossRefGoogle Scholar
Medvedev, M.V. & Melott, A.L. (2007). Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys. J. 664, 879889.CrossRefGoogle Scholar
Meert, J.G., Levashova, N.M., Bazhenov, M.L. & Landing, E. (2016). Rapid changes of magnetic field polarity in the late Ediacaran: linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Res. 34, 149157.Google Scholar
Melott, A.L. & Bambach, R.K. (2011a). A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology 37, 92112.Google Scholar
Melott, A.L. & Bambach, R.K. (2011b). A ubiquitous ~62 Myr periodic fluctuation superimposed on general trends in fossil biodiversity: II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37, 383408.Google Scholar
Melott, A.L. & Bambach, R.K. (2013). Do periodicities in extinction – with possible astronomical connections – survive a revision of the geological timescale? Astrophys. J. 773, 610. doi: 10.1088/0004-637X/773/1/6.Google Scholar
Melott, A.L. & Bambach, R.K. (2014). Analysis of periodicity of extinction using the 2012 geological time scale. Paleobiology 40, 177196.Google Scholar
Melott, A.L., Bambach, R.K., Petersen, K.D. & McArthur, J.M. (2012). A ~60 Myr periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J. Geology 120, 217226.Google Scholar
Merrill, R.T. & McFadden, P.L. (1994). Geomagnetic field stability: reversal events and excursions. Earth Planet. Sci. Lett. 121, 5769.Google Scholar
Mjelde, R. (2016). Late Cenozoic global pulsation in hotspot magmatism and their possible interplay with plate tectonics, Earth's core and climate. Curr. Sci. 111, 823835.Google Scholar
Mjelde, R. & Faleide, J.I. (2009). Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes? Mar. Geophys. Res. 30, 6172.CrossRefGoogle Scholar
Muller, R.A. & MacDonald, G.J. (2002). Ice Ages and Astronomical Causes: Data, Spectral Analysis and Mechanisms. Springer, Berlin.Google Scholar
Olson, P. (1983). Geomagnetic polarity reversals in a turbulent core. Phys. Earth Planet. Inter. 33, 260274.Google Scholar
Olson, P. & Amit, H. (2015). Mantle superplumes induce geomagnetic superchrons. Front. Earth Sci. 3, 111.CrossRefGoogle Scholar
Opdyke, N.D. & Channell, J.E.T. (1996). Magnetic Stratigraphy. Academic Press, San Diego.Google Scholar
Pavlov, A.A., Pavlov, A.K., Mills, M.J. & Toon, O.B. (2005). Catastrophic ozone loss during passage of the Solar system through an interstellar cloud. Geophys. Res. Lett. 320, L01815. doi: 10.1029/2004GL021601.Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
Rampino, M.R. (2015). Disc dark matter in the galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events. Mon. Not. R. Astron. Soc. 448, 18161820.Google Scholar
Rampino, M.R. & Prokoph, A. (2013). Are mantle plumes periodic? Eos 94, 113114. doi: 10.1002/2013EO120001.Google Scholar
Raup, D.M. (1985a). Magnetic reversals and mass extinctions. Nature 314, 341343.Google Scholar
Raup, D.M. (1985b). Rise and fall of periodicity. Nature 317, 384385.Google Scholar
Raup, D.M. & Sepkoski, J.J. Jr. (1984). Mass extinctions in the marine fossil record. Paleobiology 14, 109125.Google Scholar
Rohde, R.A. & Muller, R.A. (2005). Cycles in fossil diversity. Nature 434, 208210.Google Scholar
Schaffer, W.M., Kendall, B.E., Tidd, C.W. & Olsen, L.F. (1993). Transient periodicity and episodic predictability in biological dynamics. IMA J. Math. Med. Biol. 10, 227247.Google Scholar
Sorriso-Valvo, L., Stefani, F., Carbone, V., Nigro, G., Lepreti, F., Vechhio, A. & Veltri, P. (2007). A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Inter. 164, 197216.Google Scholar
Stothers, R.B. (1986). Periodicity of the earth's magnetic reversals. Nature 322, 444446.Google Scholar
Tarduno, J.A., Cottrell, R.D., Davis, W.J., Nimmo, F. & Bono, R.K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521524.Google Scholar
Thomas, B.C., Engler, E.E., Kachelrieß, M., Melott, A.L., Overholt, A.C. & Semikoz, D.V. (2016). Terrestrial effects of nearby supernovae in the early Pleistocene. Astrophys. J. Lett. 826, L3. http://dx.doi.org/10.3847/2041-8205/826/1/L3.Google Scholar
Torsvik, T.H., van der Voo, R., Doubrovine, P.V., Burke, K., Steinberger, B., Ashwal, L.D., Tronnes, R.G., Webb, S.J. & Bull, A.L. (2014). Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl. Acad. Sci. USA 111, 87358740.Google Scholar
Valet, J. & Valladas, H. (2010). The Laschamp-Mono lake geomagnetic events and the extinction of Neanderthal: a causal link or a coincidence? Quat. Sci. Rev. 29, 3887–2893.Google Scholar
Wei, Y. et al. (2014). Oxygen escape from the earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett. 394, 9498.Google Scholar
Weil, A.B. & Van der Voo, R. (2002). Insights into the mechanism for orogeny-related carbonate remagnetization from growth of authigenic Fe-oxide: a scanning electron microscopy and rock magnetic study for Devonian carbonates from northern Spain. J. Geophys. Res. 107, 114.Google Scholar
Supplementary material: File

Melott supplementary material

Supplementary Table

Download Melott supplementary material(File)
File 104 KB
Supplementary material: Image

Melott supplementary material

Figure S1

Download Melott supplementary material(Image)
Image 147.7 KB